Evaluate
10
Factor
2\times 5
Share
Copied to clipboard
\frac{5}{11}\times \frac{90+1}{15}+\frac{5}{11}\times \frac{7\times 15+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Multiply 6 and 15 to get 90.
\frac{5}{11}\times \frac{91}{15}+\frac{5}{11}\times \frac{7\times 15+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Add 90 and 1 to get 91.
\frac{5\times 91}{11\times 15}+\frac{5}{11}\times \frac{7\times 15+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Multiply \frac{5}{11} times \frac{91}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{455}{165}+\frac{5}{11}\times \frac{7\times 15+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Do the multiplications in the fraction \frac{5\times 91}{11\times 15}.
\frac{91}{33}+\frac{5}{11}\times \frac{7\times 15+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Reduce the fraction \frac{455}{165} to lowest terms by extracting and canceling out 5.
\frac{91}{33}+\frac{5}{11}\times \frac{105+4}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Multiply 7 and 15 to get 105.
\frac{91}{33}+\frac{5}{11}\times \frac{109}{15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Add 105 and 4 to get 109.
\frac{91}{33}+\frac{5\times 109}{11\times 15}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Multiply \frac{5}{11} times \frac{109}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{91}{33}+\frac{545}{165}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Do the multiplications in the fraction \frac{5\times 109}{11\times 15}.
\frac{91}{33}+\frac{109}{33}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Reduce the fraction \frac{545}{165} to lowest terms by extracting and canceling out 5.
\frac{91+109}{33}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Since \frac{91}{33} and \frac{109}{33} have the same denominator, add them by adding their numerators.
\frac{200}{33}+\frac{5}{11}\times \frac{8\times 3+2}{3}
Add 91 and 109 to get 200.
\frac{200}{33}+\frac{5}{11}\times \frac{24+2}{3}
Multiply 8 and 3 to get 24.
\frac{200}{33}+\frac{5}{11}\times \frac{26}{3}
Add 24 and 2 to get 26.
\frac{200}{33}+\frac{5\times 26}{11\times 3}
Multiply \frac{5}{11} times \frac{26}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{200}{33}+\frac{130}{33}
Do the multiplications in the fraction \frac{5\times 26}{11\times 3}.
\frac{200+130}{33}
Since \frac{200}{33} and \frac{130}{33} have the same denominator, add them by adding their numerators.
\frac{330}{33}
Add 200 and 130 to get 330.
10
Divide 330 by 33 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}