Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\frac{1}{2}+\frac{1\times 10+6}{10}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}+\frac{10+6}{10}
Multiply 1 and 10 to get 10.
\frac{1}{2}+\frac{16}{10}
Add 10 and 6 to get 16.
\frac{1}{2}+\frac{8}{5}
Reduce the fraction \frac{16}{10} to lowest terms by extracting and canceling out 2.
\frac{5}{10}+\frac{16}{10}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{8}{5} to fractions with denominator 10.
\frac{5+16}{10}
Since \frac{5}{10} and \frac{16}{10} have the same denominator, add them by adding their numerators.
\frac{21}{10}
Add 5 and 16 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}