Evaluate
\frac{225\sqrt{3}}{4}+\frac{4125}{7}\approx 686.713572211
Factor
\frac{75 {(21 \sqrt{3} + 220)}}{28} = 686.7135722114637
Share
Copied to clipboard
\frac{110\times 15\times 15}{42}+15\times 15\times \frac{\sqrt{3}}{4}
Multiply 5 and 22 to get 110.
\frac{1650\times 15}{42}+15\times 15\times \frac{\sqrt{3}}{4}
Multiply 110 and 15 to get 1650.
\frac{24750}{42}+15\times 15\times \frac{\sqrt{3}}{4}
Multiply 1650 and 15 to get 24750.
\frac{4125}{7}+15\times 15\times \frac{\sqrt{3}}{4}
Reduce the fraction \frac{24750}{42} to lowest terms by extracting and canceling out 6.
\frac{4125}{7}+225\times \frac{\sqrt{3}}{4}
Multiply 15 and 15 to get 225.
\frac{4125}{7}+\frac{225\sqrt{3}}{4}
Express 225\times \frac{\sqrt{3}}{4} as a single fraction.
\frac{4125\times 4}{28}+\frac{7\times 225\sqrt{3}}{28}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 4 is 28. Multiply \frac{4125}{7} times \frac{4}{4}. Multiply \frac{225\sqrt{3}}{4} times \frac{7}{7}.
\frac{4125\times 4+7\times 225\sqrt{3}}{28}
Since \frac{4125\times 4}{28} and \frac{7\times 225\sqrt{3}}{28} have the same denominator, add them by adding their numerators.
\frac{16500+1575\sqrt{3}}{28}
Do the multiplications in 4125\times 4+7\times 225\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}