Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}
Rationalize the denominator of \frac{5\sqrt{2}+3\sqrt{3}}{3\sqrt{2}+2\sqrt{3}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{3}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{9\times 2-\left(2\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-\left(2\sqrt{3}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{18-12}
Multiply 4 and 3 to get 12.
\frac{\left(5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)}{6}
Subtract 12 from 18 to get 6.
\frac{15\left(\sqrt{2}\right)^{2}-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Apply the distributive property by multiplying each term of 5\sqrt{2}+3\sqrt{3} by each term of 3\sqrt{2}-2\sqrt{3}.
\frac{15\times 2-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
The square of \sqrt{2} is 2.
\frac{30-10\sqrt{3}\sqrt{2}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
Multiply 15 and 2 to get 30.
\frac{30-10\sqrt{6}+9\sqrt{3}\sqrt{2}-6\left(\sqrt{3}\right)^{2}}{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{30-10\sqrt{6}+9\sqrt{6}-6\left(\sqrt{3}\right)^{2}}{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{30-\sqrt{6}-6\left(\sqrt{3}\right)^{2}}{6}
Combine -10\sqrt{6} and 9\sqrt{6} to get -\sqrt{6}.
\frac{30-\sqrt{6}-6\times 3}{6}
The square of \sqrt{3} is 3.
\frac{30-\sqrt{6}-18}{6}
Multiply -6 and 3 to get -18.
\frac{12-\sqrt{6}}{6}
Subtract 18 from 30 to get 12.