Skip to main content
Evaluate
Tick mark Image

Share

\frac{5\times \left(\frac{1}{2}\right)^{2}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \sin(30) from trigonometric values table.
\frac{5\times \frac{1}{4}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{5}{4}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Multiply 5 and \frac{1}{4} to get \frac{5}{4}.
\frac{\frac{5}{4}+\left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \cos(45) from trigonometric values table.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\sqrt{3}\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \tan(60) from trigonometric values table.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\times 3}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
The square of \sqrt{3} is 3.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+12}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Multiply 4 and 3 to get 12.
\frac{\frac{53}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Add \frac{5}{4} and 12 to get \frac{53}{4}.
\frac{\frac{53}{4}+\frac{2}{2^{2}}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
The square of \sqrt{2} is 2.
\frac{\frac{53}{4}+\frac{2}{4}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Calculate 2 to the power of 2 and get 4.
\frac{\frac{53}{4}+\frac{1}{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{55}{4}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Add \frac{53}{4} and \frac{1}{2} to get \frac{55}{4}.
\frac{\frac{55}{4}}{2\times \left(\frac{1}{2}\right)^{2}\cos(60)+\tan(45)}
Get the value of \sin(30) from trigonometric values table.
\frac{\frac{55}{4}}{2\times \frac{1}{4}\cos(60)+\tan(45)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{55}{4}}{\frac{1}{2}\cos(60)+\tan(45)}
Multiply 2 and \frac{1}{4} to get \frac{1}{2}.
\frac{\frac{55}{4}}{\frac{1}{2}\times \frac{1}{2}+\tan(45)}
Get the value of \cos(60) from trigonometric values table.
\frac{\frac{55}{4}}{\frac{1}{4}+\tan(45)}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{\frac{55}{4}}{\frac{1}{4}+1}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{55}{4}}{\frac{5}{4}}
Add \frac{1}{4} and 1 to get \frac{5}{4}.
\frac{55}{4}\times \frac{4}{5}
Divide \frac{55}{4} by \frac{5}{4} by multiplying \frac{55}{4} by the reciprocal of \frac{5}{4}.
11
Multiply \frac{55}{4} and \frac{4}{5} to get 11.