Evaluate
11
Share
Copied to clipboard
\frac{5\times \left(\frac{1}{2}\right)^{2}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \sin(30) from trigonometric values table.
\frac{5\times \frac{1}{4}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{5}{4}+\left(\cos(45)\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Multiply 5 and \frac{1}{4} to get \frac{5}{4}.
\frac{\frac{5}{4}+\left(\frac{\sqrt{2}}{2}\right)^{2}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \cos(45) from trigonometric values table.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\tan(60)\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\left(\sqrt{3}\right)^{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Get the value of \tan(60) from trigonometric values table.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+4\times 3}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
The square of \sqrt{3} is 3.
\frac{\frac{5}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+12}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Multiply 4 and 3 to get 12.
\frac{\frac{53}{4}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Add \frac{5}{4} and 12 to get \frac{53}{4}.
\frac{\frac{53}{4}+\frac{2}{2^{2}}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
The square of \sqrt{2} is 2.
\frac{\frac{53}{4}+\frac{2}{4}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Calculate 2 to the power of 2 and get 4.
\frac{\frac{53}{4}+\frac{1}{2}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{55}{4}}{2\left(\sin(30)\right)^{2}\cos(60)+\tan(45)}
Add \frac{53}{4} and \frac{1}{2} to get \frac{55}{4}.
\frac{\frac{55}{4}}{2\times \left(\frac{1}{2}\right)^{2}\cos(60)+\tan(45)}
Get the value of \sin(30) from trigonometric values table.
\frac{\frac{55}{4}}{2\times \frac{1}{4}\cos(60)+\tan(45)}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{55}{4}}{\frac{1}{2}\cos(60)+\tan(45)}
Multiply 2 and \frac{1}{4} to get \frac{1}{2}.
\frac{\frac{55}{4}}{\frac{1}{2}\times \frac{1}{2}+\tan(45)}
Get the value of \cos(60) from trigonometric values table.
\frac{\frac{55}{4}}{\frac{1}{4}+\tan(45)}
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{\frac{55}{4}}{\frac{1}{4}+1}
Get the value of \tan(45) from trigonometric values table.
\frac{\frac{55}{4}}{\frac{5}{4}}
Add \frac{1}{4} and 1 to get \frac{5}{4}.
\frac{55}{4}\times \frac{4}{5}
Divide \frac{55}{4} by \frac{5}{4} by multiplying \frac{55}{4} by the reciprocal of \frac{5}{4}.
11
Multiply \frac{55}{4} and \frac{4}{5} to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}