Evaluate
\frac{25}{7}\approx 3.571428571
Factor
\frac{5 ^ {2}}{7} = 3\frac{4}{7} = 3.5714285714285716
Share
Copied to clipboard
\frac{\frac{25}{6}\left(\frac{8}{2}-\frac{4}{12}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Calculate 5 to the power of 2 and get 25.
\frac{\frac{25}{6}\left(4-\frac{4}{12}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Divide 8 by 2 to get 4.
\frac{\frac{25}{6}\left(4-\frac{1}{3}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{\frac{25}{6}\left(\frac{12}{3}-\frac{1}{3}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Convert 4 to fraction \frac{12}{3}.
\frac{\frac{25}{6}\times \frac{12-1}{3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Since \frac{12}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{25}{6}\times \frac{11}{3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Subtract 1 from 12 to get 11.
\frac{\frac{25\times 11}{6\times 3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Multiply \frac{25}{6} times \frac{11}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{275}{18}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{25\times 11}{6\times 3}.
\frac{275}{18\times 7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Express \frac{\frac{275}{18}}{7} as a single fraction.
\frac{275}{126}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Multiply 18 and 7 to get 126.
\frac{275}{126}+\left(1+\frac{16}{9}\right)\times \frac{1}{2}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{275}{126}+\left(\frac{9}{9}+\frac{16}{9}\right)\times \frac{1}{2}
Convert 1 to fraction \frac{9}{9}.
\frac{275}{126}+\frac{9+16}{9}\times \frac{1}{2}
Since \frac{9}{9} and \frac{16}{9} have the same denominator, add them by adding their numerators.
\frac{275}{126}+\frac{25}{9}\times \frac{1}{2}
Add 9 and 16 to get 25.
\frac{275}{126}+\frac{25\times 1}{9\times 2}
Multiply \frac{25}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{275}{126}+\frac{25}{18}
Do the multiplications in the fraction \frac{25\times 1}{9\times 2}.
\frac{275}{126}+\frac{175}{126}
Least common multiple of 126 and 18 is 126. Convert \frac{275}{126} and \frac{25}{18} to fractions with denominator 126.
\frac{275+175}{126}
Since \frac{275}{126} and \frac{175}{126} have the same denominator, add them by adding their numerators.
\frac{450}{126}
Add 275 and 175 to get 450.
\frac{25}{7}
Reduce the fraction \frac{450}{126} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}