Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{25}{6}\left(\frac{8}{2}-\frac{4}{12}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Calculate 5 to the power of 2 and get 25.
\frac{\frac{25}{6}\left(4-\frac{4}{12}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Divide 8 by 2 to get 4.
\frac{\frac{25}{6}\left(4-\frac{1}{3}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Reduce the fraction \frac{4}{12} to lowest terms by extracting and canceling out 4.
\frac{\frac{25}{6}\left(\frac{12}{3}-\frac{1}{3}\right)}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Convert 4 to fraction \frac{12}{3}.
\frac{\frac{25}{6}\times \frac{12-1}{3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Since \frac{12}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{25}{6}\times \frac{11}{3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Subtract 1 from 12 to get 11.
\frac{\frac{25\times 11}{6\times 3}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Multiply \frac{25}{6} times \frac{11}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{275}{18}}{7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{25\times 11}{6\times 3}.
\frac{275}{18\times 7}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Express \frac{\frac{275}{18}}{7} as a single fraction.
\frac{275}{126}+\left(1+\left(\frac{4}{3}\right)^{2}\right)\times \frac{1}{2}
Multiply 18 and 7 to get 126.
\frac{275}{126}+\left(1+\frac{16}{9}\right)\times \frac{1}{2}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{275}{126}+\left(\frac{9}{9}+\frac{16}{9}\right)\times \frac{1}{2}
Convert 1 to fraction \frac{9}{9}.
\frac{275}{126}+\frac{9+16}{9}\times \frac{1}{2}
Since \frac{9}{9} and \frac{16}{9} have the same denominator, add them by adding their numerators.
\frac{275}{126}+\frac{25}{9}\times \frac{1}{2}
Add 9 and 16 to get 25.
\frac{275}{126}+\frac{25\times 1}{9\times 2}
Multiply \frac{25}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{275}{126}+\frac{25}{18}
Do the multiplications in the fraction \frac{25\times 1}{9\times 2}.
\frac{275}{126}+\frac{175}{126}
Least common multiple of 126 and 18 is 126. Convert \frac{275}{126} and \frac{25}{18} to fractions with denominator 126.
\frac{275+175}{126}
Since \frac{275}{126} and \frac{175}{126} have the same denominator, add them by adding their numerators.
\frac{450}{126}
Add 275 and 175 to get 450.
\frac{25}{7}
Reduce the fraction \frac{450}{126} to lowest terms by extracting and canceling out 18.