Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{25}w^{0}}{y^{-10}}
Calculate 5 to the power of -2 and get \frac{1}{25}.
\frac{\frac{1}{25}\times 1}{y^{-10}}
Calculate w to the power of 0 and get 1.
\frac{\frac{1}{25}}{y^{-10}}
Multiply \frac{1}{25} and 1 to get \frac{1}{25}.
\frac{1}{25y^{-10}}
Express \frac{\frac{1}{25}}{y^{-10}} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{25}w^{0}}{y^{-10}})
Calculate 5 to the power of -2 and get \frac{1}{25}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{25}\times 1}{y^{-10}})
Calculate w to the power of 0 and get 1.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{25}}{y^{-10}})
Multiply \frac{1}{25} and 1 to get \frac{1}{25}.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{25y^{-10}})
Express \frac{\frac{1}{25}}{y^{-10}} as a single fraction.
-\left(25y^{-10}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(25y^{-10})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(25y^{-10}\right)^{-2}\left(-10\right)\times 25y^{-10-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
250y^{-11}\times \left(25y^{-10}\right)^{-2}
Simplify.