Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p}{6+p}
Factor p^{2}-36.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and 6+p is \left(p-6\right)\left(p+6\right). Multiply \frac{p}{6+p} times \frac{p-6}{p-6}.
\frac{5+p^{2}-p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)}
Since \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} and \frac{p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5+p^{2}-p^{2}+6p}{\left(p-6\right)\left(p+6\right)}
Do the multiplications in 5+p^{2}-p\left(p-6\right).
\frac{5+6p}{\left(p-6\right)\left(p+6\right)}
Combine like terms in 5+p^{2}-p^{2}+6p.
\frac{5+6p}{p^{2}-36}
Expand \left(p-6\right)\left(p+6\right).
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p}{6+p}
Factor p^{2}-36.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and 6+p is \left(p-6\right)\left(p+6\right). Multiply \frac{p}{6+p} times \frac{p-6}{p-6}.
\frac{5+p^{2}-p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)}
Since \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} and \frac{p\left(p-6\right)}{\left(p-6\right)\left(p+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5+p^{2}-p^{2}+6p}{\left(p-6\right)\left(p+6\right)}
Do the multiplications in 5+p^{2}-p\left(p-6\right).
\frac{5+6p}{\left(p-6\right)\left(p+6\right)}
Combine like terms in 5+p^{2}-p^{2}+6p.
\frac{5+6p}{p^{2}-36}
Expand \left(p-6\right)\left(p+6\right).