Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{5+p^{2}}{p^{2}-36}-\frac{p\left(p+6\right)}{p\left(p+36\right)}
Factor the expressions that are not already factored in \frac{6p+p^{2}}{36p+p^{2}}.
\frac{5+p^{2}}{p^{2}-36}-\frac{p+6}{p+36}
Cancel out p in both numerator and denominator.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p+6}{p+36}
Factor p^{2}-36.
\frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}-\frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and p+36 is \left(p-6\right)\left(p+6\right)\left(p+36\right). Multiply \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} times \frac{p+36}{p+36}. Multiply \frac{p+6}{p+36} times \frac{\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)}.
\frac{\left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Since \frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} and \frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Do the multiplications in \left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right).
\frac{41p+396+30p^{2}}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Combine like terms in 5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216.
\frac{41p+396+30p^{2}}{p^{3}+36p^{2}-36p-1296}
Expand \left(p-6\right)\left(p+6\right)\left(p+36\right).
\frac{5+p^{2}}{p^{2}-36}-\frac{p\left(p+6\right)}{p\left(p+36\right)}
Factor the expressions that are not already factored in \frac{6p+p^{2}}{36p+p^{2}}.
\frac{5+p^{2}}{p^{2}-36}-\frac{p+6}{p+36}
Cancel out p in both numerator and denominator.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p+6}{p+36}
Factor p^{2}-36.
\frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}-\frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and p+36 is \left(p-6\right)\left(p+6\right)\left(p+36\right). Multiply \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} times \frac{p+36}{p+36}. Multiply \frac{p+6}{p+36} times \frac{\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)}.
\frac{\left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Since \frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} and \frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Do the multiplications in \left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right).
\frac{41p+396+30p^{2}}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Combine like terms in 5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216.
\frac{41p+396+30p^{2}}{p^{3}+36p^{2}-36p-1296}
Expand \left(p-6\right)\left(p+6\right)\left(p+36\right).