Evaluate
\frac{30p^{2}+41p+396}{\left(p+36\right)\left(p^{2}-36\right)}
Expand
\frac{30p^{2}+41p+396}{\left(p+36\right)\left(p^{2}-36\right)}
Share
Copied to clipboard
\frac{5+p^{2}}{p^{2}-36}-\frac{p\left(p+6\right)}{p\left(p+36\right)}
Factor the expressions that are not already factored in \frac{6p+p^{2}}{36p+p^{2}}.
\frac{5+p^{2}}{p^{2}-36}-\frac{p+6}{p+36}
Cancel out p in both numerator and denominator.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p+6}{p+36}
Factor p^{2}-36.
\frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}-\frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and p+36 is \left(p-6\right)\left(p+6\right)\left(p+36\right). Multiply \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} times \frac{p+36}{p+36}. Multiply \frac{p+6}{p+36} times \frac{\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)}.
\frac{\left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Since \frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} and \frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Do the multiplications in \left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right).
\frac{41p+396+30p^{2}}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Combine like terms in 5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216.
\frac{41p+396+30p^{2}}{p^{3}+36p^{2}-36p-1296}
Expand \left(p-6\right)\left(p+6\right)\left(p+36\right).
\frac{5+p^{2}}{p^{2}-36}-\frac{p\left(p+6\right)}{p\left(p+36\right)}
Factor the expressions that are not already factored in \frac{6p+p^{2}}{36p+p^{2}}.
\frac{5+p^{2}}{p^{2}-36}-\frac{p+6}{p+36}
Cancel out p in both numerator and denominator.
\frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)}-\frac{p+6}{p+36}
Factor p^{2}-36.
\frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}-\frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(p-6\right)\left(p+6\right) and p+36 is \left(p-6\right)\left(p+6\right)\left(p+36\right). Multiply \frac{5+p^{2}}{\left(p-6\right)\left(p+6\right)} times \frac{p+36}{p+36}. Multiply \frac{p+6}{p+36} times \frac{\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)}.
\frac{\left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Since \frac{\left(5+p^{2}\right)\left(p+36\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} and \frac{\left(p+6\right)\left(p-6\right)\left(p+6\right)}{\left(p-6\right)\left(p+6\right)\left(p+36\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Do the multiplications in \left(5+p^{2}\right)\left(p+36\right)-\left(p+6\right)\left(p-6\right)\left(p+6\right).
\frac{41p+396+30p^{2}}{\left(p-6\right)\left(p+6\right)\left(p+36\right)}
Combine like terms in 5p+180+p^{3}+36p^{2}-p^{3}+36p-6p^{2}+216.
\frac{41p+396+30p^{2}}{p^{3}+36p^{2}-36p-1296}
Expand \left(p-6\right)\left(p+6\right)\left(p+36\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}