Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-i.
\frac{\left(5+i\right)\left(4-i\right)}{4^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+i\right)\left(4-i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 4+5\left(-i\right)+4i-i^{2}}{17}
Multiply complex numbers 5+i and 4-i like you multiply binomials.
\frac{5\times 4+5\left(-i\right)+4i-\left(-1\right)}{17}
By definition, i^{2} is -1.
\frac{20-5i+4i+1}{17}
Do the multiplications in 5\times 4+5\left(-i\right)+4i-\left(-1\right).
\frac{20+1+\left(-5+4\right)i}{17}
Combine the real and imaginary parts in 20-5i+4i+1.
\frac{21-i}{17}
Do the additions in 20+1+\left(-5+4\right)i.
\frac{21}{17}-\frac{1}{17}i
Divide 21-i by 17 to get \frac{21}{17}-\frac{1}{17}i.
Re(\frac{\left(5+i\right)\left(4-i\right)}{\left(4+i\right)\left(4-i\right)})
Multiply both numerator and denominator of \frac{5+i}{4+i} by the complex conjugate of the denominator, 4-i.
Re(\frac{\left(5+i\right)\left(4-i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+i\right)\left(4-i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 4+5\left(-i\right)+4i-i^{2}}{17})
Multiply complex numbers 5+i and 4-i like you multiply binomials.
Re(\frac{5\times 4+5\left(-i\right)+4i-\left(-1\right)}{17})
By definition, i^{2} is -1.
Re(\frac{20-5i+4i+1}{17})
Do the multiplications in 5\times 4+5\left(-i\right)+4i-\left(-1\right).
Re(\frac{20+1+\left(-5+4\right)i}{17})
Combine the real and imaginary parts in 20-5i+4i+1.
Re(\frac{21-i}{17})
Do the additions in 20+1+\left(-5+4\right)i.
Re(\frac{21}{17}-\frac{1}{17}i)
Divide 21-i by 17 to get \frac{21}{17}-\frac{1}{17}i.
\frac{21}{17}
The real part of \frac{21}{17}-\frac{1}{17}i is \frac{21}{17}.