Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+3i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-5i.
\frac{\left(5+3i\right)\left(2-5i\right)}{2^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+3i\right)\left(2-5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)i^{2}}{29}
Multiply complex numbers 5+3i and 2-5i like you multiply binomials.
\frac{5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{10-25i+6i+15}{29}
Do the multiplications in 5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)\left(-1\right).
\frac{10+15+\left(-25+6\right)i}{29}
Combine the real and imaginary parts in 10-25i+6i+15.
\frac{25-19i}{29}
Do the additions in 10+15+\left(-25+6\right)i.
\frac{25}{29}-\frac{19}{29}i
Divide 25-19i by 29 to get \frac{25}{29}-\frac{19}{29}i.
Re(\frac{\left(5+3i\right)\left(2-5i\right)}{\left(2+5i\right)\left(2-5i\right)})
Multiply both numerator and denominator of \frac{5+3i}{2+5i} by the complex conjugate of the denominator, 2-5i.
Re(\frac{\left(5+3i\right)\left(2-5i\right)}{2^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+3i\right)\left(2-5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)i^{2}}{29})
Multiply complex numbers 5+3i and 2-5i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{10-25i+6i+15}{29})
Do the multiplications in 5\times 2+5\times \left(-5i\right)+3i\times 2+3\left(-5\right)\left(-1\right).
Re(\frac{10+15+\left(-25+6\right)i}{29})
Combine the real and imaginary parts in 10-25i+6i+15.
Re(\frac{25-19i}{29})
Do the additions in 10+15+\left(-25+6\right)i.
Re(\frac{25}{29}-\frac{19}{29}i)
Divide 25-19i by 29 to get \frac{25}{29}-\frac{19}{29}i.
\frac{25}{29}
The real part of \frac{25}{29}-\frac{19}{29}i is \frac{25}{29}.