Evaluate
i
Real Part
0
Share
Copied to clipboard
\frac{\left(5+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+5i.
\frac{\left(5+2i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2i\right)\left(2+5i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5i^{2}}{29}
Multiply complex numbers 5+2i and 2+5i like you multiply binomials.
\frac{5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{10+25i+4i-10}{29}
Do the multiplications in 5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5\left(-1\right).
\frac{10-10+\left(25+4\right)i}{29}
Combine the real and imaginary parts in 10+25i+4i-10.
\frac{29i}{29}
Do the additions in 10-10+\left(25+4\right)i.
i
Divide 29i by 29 to get i.
Re(\frac{\left(5+2i\right)\left(2+5i\right)}{\left(2-5i\right)\left(2+5i\right)})
Multiply both numerator and denominator of \frac{5+2i}{2-5i} by the complex conjugate of the denominator, 2+5i.
Re(\frac{\left(5+2i\right)\left(2+5i\right)}{2^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+2i\right)\left(2+5i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5i^{2}}{29})
Multiply complex numbers 5+2i and 2+5i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{10+25i+4i-10}{29})
Do the multiplications in 5\times 2+5\times \left(5i\right)+2i\times 2+2\times 5\left(-1\right).
Re(\frac{10-10+\left(25+4\right)i}{29})
Combine the real and imaginary parts in 10+25i+4i-10.
Re(\frac{29i}{29})
Do the additions in 10-10+\left(25+4\right)i.
Re(i)
Divide 29i by 29 to get i.
0
The real part of i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}