Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+2i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+3i.
\frac{\left(5+2i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2i\right)\left(2+3i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
\frac{5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3i^{2}}{13}
Multiply complex numbers 5+2i and 2+3i like you multiply binomials.
\frac{5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3\left(-1\right)}{13}
By definition, i^{2} is -1.
\frac{10+15i+4i-6}{13}
Do the multiplications in 5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3\left(-1\right).
\frac{10-6+\left(15+4\right)i}{13}
Combine the real and imaginary parts in 10+15i+4i-6.
\frac{4+19i}{13}
Do the additions in 10-6+\left(15+4\right)i.
\frac{4}{13}+\frac{19}{13}i
Divide 4+19i by 13 to get \frac{4}{13}+\frac{19}{13}i.
Re(\frac{\left(5+2i\right)\left(2+3i\right)}{\left(2-3i\right)\left(2+3i\right)})
Multiply both numerator and denominator of \frac{5+2i}{2-3i} by the complex conjugate of the denominator, 2+3i.
Re(\frac{\left(5+2i\right)\left(2+3i\right)}{2^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(5+2i\right)\left(2+3i\right)}{13})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3i^{2}}{13})
Multiply complex numbers 5+2i and 2+3i like you multiply binomials.
Re(\frac{5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3\left(-1\right)}{13})
By definition, i^{2} is -1.
Re(\frac{10+15i+4i-6}{13})
Do the multiplications in 5\times 2+5\times \left(3i\right)+2i\times 2+2\times 3\left(-1\right).
Re(\frac{10-6+\left(15+4\right)i}{13})
Combine the real and imaginary parts in 10+15i+4i-6.
Re(\frac{4+19i}{13})
Do the additions in 10-6+\left(15+4\right)i.
Re(\frac{4}{13}+\frac{19}{13}i)
Divide 4+19i by 13 to get \frac{4}{13}+\frac{19}{13}i.
\frac{4}{13}
The real part of \frac{4}{13}+\frac{19}{13}i is \frac{4}{13}.