Skip to main content
Solve for b
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{\left(7+4\sqrt{5}\right)\left(7-4\sqrt{5}\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{5+2\sqrt{3}}{7+4\sqrt{5}} by multiplying numerator and denominator by 7-4\sqrt{5}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{7^{2}-\left(4\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Consider \left(7+4\sqrt{5}\right)\left(7-4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-\left(4\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-4^{2}\left(\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Expand \left(4\sqrt{5}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-16\left(\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Calculate 4 to the power of 2 and get 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-16\times 5}=a+b\sqrt{3}
The square of \sqrt{5} is 5.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-80}=a+b\sqrt{3}
Multiply 16 and 5 to get 80.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{-31}=a+b\sqrt{3}
Subtract 80 from 49 to get -31.
\frac{35-20\sqrt{5}+14\sqrt{3}-8\sqrt{3}\sqrt{5}}{-31}=a+b\sqrt{3}
Use the distributive property to multiply 5+2\sqrt{3} by 7-4\sqrt{5}.
\frac{35-20\sqrt{5}+14\sqrt{3}-8\sqrt{15}}{-31}=a+b\sqrt{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-35+20\sqrt{5}-14\sqrt{3}+8\sqrt{15}}{31}=a+b\sqrt{3}
Multiply both numerator and denominator by -1.
-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}=a+b\sqrt{3}
Divide each term of -35+20\sqrt{5}-14\sqrt{3}+8\sqrt{15} by 31 to get -\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}.
a+b\sqrt{3}=-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}-a
Subtract a from both sides.
\sqrt{3}b=-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-31a+8\sqrt{15}+20\sqrt{5}-14\sqrt{3}-35\right)}{93}
Divide \frac{20\sqrt{5}}{31}-a+\frac{8\sqrt{15}}{31}-\frac{35}{31}-\frac{14\sqrt{3}}{31} by \sqrt{3}.