Solve for b
b=-\frac{\sqrt{3}a}{3}+\frac{20\sqrt{15}}{93}+\frac{24\sqrt{5}}{93}-\frac{35\sqrt{3}}{93}-\frac{14}{31}
Solve for a
a=-\frac{\left(7-4\sqrt{5}\right)\left(-4\sqrt{15}b-7\sqrt{3}b+2\sqrt{3}+5\right)}{31}
Quiz
Algebra
5 problems similar to:
\frac { 5 + 2 \sqrt { 3 } } { 7 + 4 \sqrt { 5 } } = a + b \sqrt { 3 }
Share
Copied to clipboard
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{\left(7+4\sqrt{5}\right)\left(7-4\sqrt{5}\right)}=a+b\sqrt{3}
Rationalize the denominator of \frac{5+2\sqrt{3}}{7+4\sqrt{5}} by multiplying numerator and denominator by 7-4\sqrt{5}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{7^{2}-\left(4\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Consider \left(7+4\sqrt{5}\right)\left(7-4\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-\left(4\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Calculate 7 to the power of 2 and get 49.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-4^{2}\left(\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Expand \left(4\sqrt{5}\right)^{2}.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-16\left(\sqrt{5}\right)^{2}}=a+b\sqrt{3}
Calculate 4 to the power of 2 and get 16.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-16\times 5}=a+b\sqrt{3}
The square of \sqrt{5} is 5.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{49-80}=a+b\sqrt{3}
Multiply 16 and 5 to get 80.
\frac{\left(5+2\sqrt{3}\right)\left(7-4\sqrt{5}\right)}{-31}=a+b\sqrt{3}
Subtract 80 from 49 to get -31.
\frac{35-20\sqrt{5}+14\sqrt{3}-8\sqrt{3}\sqrt{5}}{-31}=a+b\sqrt{3}
Use the distributive property to multiply 5+2\sqrt{3} by 7-4\sqrt{5}.
\frac{35-20\sqrt{5}+14\sqrt{3}-8\sqrt{15}}{-31}=a+b\sqrt{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{-35+20\sqrt{5}-14\sqrt{3}+8\sqrt{15}}{31}=a+b\sqrt{3}
Multiply both numerator and denominator by -1.
-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}=a+b\sqrt{3}
Divide each term of -35+20\sqrt{5}-14\sqrt{3}+8\sqrt{15} by 31 to get -\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}.
a+b\sqrt{3}=-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}
Swap sides so that all variable terms are on the left hand side.
b\sqrt{3}=-\frac{35}{31}+\frac{20}{31}\sqrt{5}-\frac{14}{31}\sqrt{3}+\frac{8}{31}\sqrt{15}-a
Subtract a from both sides.
\sqrt{3}b=-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}
The equation is in standard form.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
b=\frac{-a+\frac{8\sqrt{15}}{31}+\frac{20\sqrt{5}}{31}-\frac{14\sqrt{3}}{31}-\frac{35}{31}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
b=\frac{\sqrt{3}\left(-31a+8\sqrt{15}+20\sqrt{5}-14\sqrt{3}-35\right)}{93}
Divide \frac{20\sqrt{5}}{31}-a+\frac{8\sqrt{15}}{31}-\frac{35}{31}-\frac{14\sqrt{3}}{31} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}