Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5+\sqrt{3}\right)\left(6-\sqrt{2}\right)}{\left(6+\sqrt{2}\right)\left(6-\sqrt{2}\right)}
Rationalize the denominator of \frac{5+\sqrt{3}}{6+\sqrt{2}} by multiplying numerator and denominator by 6-\sqrt{2}.
\frac{\left(5+\sqrt{3}\right)\left(6-\sqrt{2}\right)}{6^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(6+\sqrt{2}\right)\left(6-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5+\sqrt{3}\right)\left(6-\sqrt{2}\right)}{36-2}
Square 6. Square \sqrt{2}.
\frac{\left(5+\sqrt{3}\right)\left(6-\sqrt{2}\right)}{34}
Subtract 2 from 36 to get 34.
\frac{30-5\sqrt{2}+6\sqrt{3}-\sqrt{3}\sqrt{2}}{34}
Apply the distributive property by multiplying each term of 5+\sqrt{3} by each term of 6-\sqrt{2}.
\frac{30-5\sqrt{2}+6\sqrt{3}-\sqrt{6}}{34}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.