Evaluate
\frac{48}{13}\approx 3.692307692
Factor
\frac{2 ^ {4} \cdot 3}{13} = 3\frac{9}{13} = 3.6923076923076925
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)48}\\\end{array}
Use the 1^{st} digit 4 from dividend 48
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)48}\\\end{array}
Since 4 is less than 13, use the next digit 8 from dividend 48 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)48}\\\end{array}
Use the 2^{nd} digit 8 from dividend 48
\begin{array}{l}\phantom{13)}03\phantom{4}\\13\overline{)48}\\\phantom{13)}\underline{\phantom{}39\phantom{}}\\\phantom{13)9}9\\\end{array}
Find closest multiple of 13 to 48. We see that 3 \times 13 = 39 is the nearest. Now subtract 39 from 48 to get reminder 9. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }9
Since 9 is less than 13, stop the division. The reminder is 9. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}