Evaluate
\frac{229}{90}\approx 2.544444444
Factor
\frac{229}{2 \cdot 3 ^ {2} \cdot 5} = 2\frac{49}{90} = 2.5444444444444443
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)458}\\\end{array}
Use the 1^{st} digit 4 from dividend 458
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)458}\\\end{array}
Since 4 is less than 180, use the next digit 5 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)458}\\\end{array}
Use the 2^{nd} digit 5 from dividend 458
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)458}\\\end{array}
Since 45 is less than 180, use the next digit 8 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)458}\\\end{array}
Use the 3^{rd} digit 8 from dividend 458
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)458}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)9}98\\\end{array}
Find closest multiple of 180 to 458. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 458 to get reminder 98. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }98
Since 98 is less than 180, stop the division. The reminder is 98. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}