Evaluate
\frac{423229}{53}\approx 7985.452830189
Factor
\frac{423229}{53} = 7985\frac{24}{53} = 7985.452830188679
Share
Copied to clipboard
\begin{array}{l}\phantom{53)}\phantom{1}\\53\overline{)423229}\\\end{array}
Use the 1^{st} digit 4 from dividend 423229
\begin{array}{l}\phantom{53)}0\phantom{2}\\53\overline{)423229}\\\end{array}
Since 4 is less than 53, use the next digit 2 from dividend 423229 and add 0 to the quotient
\begin{array}{l}\phantom{53)}0\phantom{3}\\53\overline{)423229}\\\end{array}
Use the 2^{nd} digit 2 from dividend 423229
\begin{array}{l}\phantom{53)}00\phantom{4}\\53\overline{)423229}\\\end{array}
Since 42 is less than 53, use the next digit 3 from dividend 423229 and add 0 to the quotient
\begin{array}{l}\phantom{53)}00\phantom{5}\\53\overline{)423229}\\\end{array}
Use the 3^{rd} digit 3 from dividend 423229
\begin{array}{l}\phantom{53)}007\phantom{6}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}52\\\end{array}
Find closest multiple of 53 to 423. We see that 7 \times 53 = 371 is the nearest. Now subtract 371 from 423 to get reminder 52. Add 7 to quotient.
\begin{array}{l}\phantom{53)}007\phantom{7}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\end{array}
Use the 4^{th} digit 2 from dividend 423229
\begin{array}{l}\phantom{53)}0079\phantom{8}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\phantom{53)}\underline{\phantom{9}477\phantom{99}}\\\phantom{53)99}45\\\end{array}
Find closest multiple of 53 to 522. We see that 9 \times 53 = 477 is the nearest. Now subtract 477 from 522 to get reminder 45. Add 9 to quotient.
\begin{array}{l}\phantom{53)}0079\phantom{9}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\phantom{53)}\underline{\phantom{9}477\phantom{99}}\\\phantom{53)99}452\\\end{array}
Use the 5^{th} digit 2 from dividend 423229
\begin{array}{l}\phantom{53)}00798\phantom{10}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\phantom{53)}\underline{\phantom{9}477\phantom{99}}\\\phantom{53)99}452\\\phantom{53)}\underline{\phantom{99}424\phantom{9}}\\\phantom{53)999}28\\\end{array}
Find closest multiple of 53 to 452. We see that 8 \times 53 = 424 is the nearest. Now subtract 424 from 452 to get reminder 28. Add 8 to quotient.
\begin{array}{l}\phantom{53)}00798\phantom{11}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\phantom{53)}\underline{\phantom{9}477\phantom{99}}\\\phantom{53)99}452\\\phantom{53)}\underline{\phantom{99}424\phantom{9}}\\\phantom{53)999}289\\\end{array}
Use the 6^{th} digit 9 from dividend 423229
\begin{array}{l}\phantom{53)}007985\phantom{12}\\53\overline{)423229}\\\phantom{53)}\underline{\phantom{}371\phantom{999}}\\\phantom{53)9}522\\\phantom{53)}\underline{\phantom{9}477\phantom{99}}\\\phantom{53)99}452\\\phantom{53)}\underline{\phantom{99}424\phantom{9}}\\\phantom{53)999}289\\\phantom{53)}\underline{\phantom{999}265\phantom{}}\\\phantom{53)9999}24\\\end{array}
Find closest multiple of 53 to 289. We see that 5 \times 53 = 265 is the nearest. Now subtract 265 from 289 to get reminder 24. Add 5 to quotient.
\text{Quotient: }7985 \text{Reminder: }24
Since 24 is less than 53, stop the division. The reminder is 24. The topmost line 007985 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7985.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}