Evaluate
\frac{422}{35}\approx 12.057142857
Factor
\frac{2 \cdot 211}{5 \cdot 7} = 12\frac{2}{35} = 12.057142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)422}\\\end{array}
Use the 1^{st} digit 4 from dividend 422
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)422}\\\end{array}
Since 4 is less than 35, use the next digit 2 from dividend 422 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)422}\\\end{array}
Use the 2^{nd} digit 2 from dividend 422
\begin{array}{l}\phantom{35)}01\phantom{4}\\35\overline{)422}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}7\\\end{array}
Find closest multiple of 35 to 42. We see that 1 \times 35 = 35 is the nearest. Now subtract 35 from 42 to get reminder 7. Add 1 to quotient.
\begin{array}{l}\phantom{35)}01\phantom{5}\\35\overline{)422}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}72\\\end{array}
Use the 3^{rd} digit 2 from dividend 422
\begin{array}{l}\phantom{35)}012\phantom{6}\\35\overline{)422}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}72\\\phantom{35)}\underline{\phantom{9}70\phantom{}}\\\phantom{35)99}2\\\end{array}
Find closest multiple of 35 to 72. We see that 2 \times 35 = 70 is the nearest. Now subtract 70 from 72 to get reminder 2. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }2
Since 2 is less than 35, stop the division. The reminder is 2. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}