Solve for x
x = \frac{\sqrt{1705} + 5}{2} \approx 23.145822822
x=\frac{5-\sqrt{1705}}{2}\approx -18.145822822
Graph
Share
Copied to clipboard
x\times 420+x\left(x-5\right)\left(-5\right)=\left(x-5\right)\times 420
Variable x cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by x\left(x-5\right), the least common multiple of x-5,x.
x\times 420+\left(x^{2}-5x\right)\left(-5\right)=\left(x-5\right)\times 420
Use the distributive property to multiply x by x-5.
x\times 420-5x^{2}+25x=\left(x-5\right)\times 420
Use the distributive property to multiply x^{2}-5x by -5.
445x-5x^{2}=\left(x-5\right)\times 420
Combine x\times 420 and 25x to get 445x.
445x-5x^{2}=420x-2100
Use the distributive property to multiply x-5 by 420.
445x-5x^{2}-420x=-2100
Subtract 420x from both sides.
25x-5x^{2}=-2100
Combine 445x and -420x to get 25x.
25x-5x^{2}+2100=0
Add 2100 to both sides.
-5x^{2}+25x+2100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\left(-5\right)\times 2100}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 25 for b, and 2100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\left(-5\right)\times 2100}}{2\left(-5\right)}
Square 25.
x=\frac{-25±\sqrt{625+20\times 2100}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-25±\sqrt{625+42000}}{2\left(-5\right)}
Multiply 20 times 2100.
x=\frac{-25±\sqrt{42625}}{2\left(-5\right)}
Add 625 to 42000.
x=\frac{-25±5\sqrt{1705}}{2\left(-5\right)}
Take the square root of 42625.
x=\frac{-25±5\sqrt{1705}}{-10}
Multiply 2 times -5.
x=\frac{5\sqrt{1705}-25}{-10}
Now solve the equation x=\frac{-25±5\sqrt{1705}}{-10} when ± is plus. Add -25 to 5\sqrt{1705}.
x=\frac{5-\sqrt{1705}}{2}
Divide -25+5\sqrt{1705} by -10.
x=\frac{-5\sqrt{1705}-25}{-10}
Now solve the equation x=\frac{-25±5\sqrt{1705}}{-10} when ± is minus. Subtract 5\sqrt{1705} from -25.
x=\frac{\sqrt{1705}+5}{2}
Divide -25-5\sqrt{1705} by -10.
x=\frac{5-\sqrt{1705}}{2} x=\frac{\sqrt{1705}+5}{2}
The equation is now solved.
x\times 420+x\left(x-5\right)\left(-5\right)=\left(x-5\right)\times 420
Variable x cannot be equal to any of the values 0,5 since division by zero is not defined. Multiply both sides of the equation by x\left(x-5\right), the least common multiple of x-5,x.
x\times 420+\left(x^{2}-5x\right)\left(-5\right)=\left(x-5\right)\times 420
Use the distributive property to multiply x by x-5.
x\times 420-5x^{2}+25x=\left(x-5\right)\times 420
Use the distributive property to multiply x^{2}-5x by -5.
445x-5x^{2}=\left(x-5\right)\times 420
Combine x\times 420 and 25x to get 445x.
445x-5x^{2}=420x-2100
Use the distributive property to multiply x-5 by 420.
445x-5x^{2}-420x=-2100
Subtract 420x from both sides.
25x-5x^{2}=-2100
Combine 445x and -420x to get 25x.
-5x^{2}+25x=-2100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+25x}{-5}=-\frac{2100}{-5}
Divide both sides by -5.
x^{2}+\frac{25}{-5}x=-\frac{2100}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-5x=-\frac{2100}{-5}
Divide 25 by -5.
x^{2}-5x=420
Divide -2100 by -5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=420+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=420+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{1705}{4}
Add 420 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{1705}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{1705}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{1705}}{2} x-\frac{5}{2}=-\frac{\sqrt{1705}}{2}
Simplify.
x=\frac{\sqrt{1705}+5}{2} x=\frac{5-\sqrt{1705}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}