Evaluate
\frac{58}{7}\approx 8.285714286
Factor
\frac{2 \cdot 29}{7} = 8\frac{2}{7} = 8.285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{49)}\phantom{1}\\49\overline{)406}\\\end{array}
Use the 1^{st} digit 4 from dividend 406
\begin{array}{l}\phantom{49)}0\phantom{2}\\49\overline{)406}\\\end{array}
Since 4 is less than 49, use the next digit 0 from dividend 406 and add 0 to the quotient
\begin{array}{l}\phantom{49)}0\phantom{3}\\49\overline{)406}\\\end{array}
Use the 2^{nd} digit 0 from dividend 406
\begin{array}{l}\phantom{49)}00\phantom{4}\\49\overline{)406}\\\end{array}
Since 40 is less than 49, use the next digit 6 from dividend 406 and add 0 to the quotient
\begin{array}{l}\phantom{49)}00\phantom{5}\\49\overline{)406}\\\end{array}
Use the 3^{rd} digit 6 from dividend 406
\begin{array}{l}\phantom{49)}008\phantom{6}\\49\overline{)406}\\\phantom{49)}\underline{\phantom{}392\phantom{}}\\\phantom{49)9}14\\\end{array}
Find closest multiple of 49 to 406. We see that 8 \times 49 = 392 is the nearest. Now subtract 392 from 406 to get reminder 14. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }14
Since 14 is less than 49, stop the division. The reminder is 14. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}