Evaluate
\frac{9}{4}=2.25
Factor
\frac{3 ^ {2}}{2 ^ {2}} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)405}\\\end{array}
Use the 1^{st} digit 4 from dividend 405
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)405}\\\end{array}
Since 4 is less than 180, use the next digit 0 from dividend 405 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)405}\\\end{array}
Use the 2^{nd} digit 0 from dividend 405
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)405}\\\end{array}
Since 40 is less than 180, use the next digit 5 from dividend 405 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)405}\\\end{array}
Use the 3^{rd} digit 5 from dividend 405
\begin{array}{l}\phantom{180)}002\phantom{6}\\180\overline{)405}\\\phantom{180)}\underline{\phantom{}360\phantom{}}\\\phantom{180)9}45\\\end{array}
Find closest multiple of 180 to 405. We see that 2 \times 180 = 360 is the nearest. Now subtract 360 from 405 to get reminder 45. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }45
Since 45 is less than 180, stop the division. The reminder is 45. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}