Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{\left(2.5+7.5i\right)\left(2.5-7.5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2.5-7.5i.
\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{2.5^{2}-7.5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{62.5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)i^{2}}{62.5}
Multiply complex numbers 40+20i and 2.5-7.5i like you multiply binomials.
\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right)}{62.5}
By definition, i^{2} is -1.
\frac{100-300i+50i+150}{62.5}
Do the multiplications in 40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right).
\frac{100+150+\left(-300+50\right)i}{62.5}
Combine the real and imaginary parts in 100-300i+50i+150.
\frac{250-250i}{62.5}
Do the additions in 100+150+\left(-300+50\right)i.
4-4i
Divide 250-250i by 62.5 to get 4-4i.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{\left(2.5+7.5i\right)\left(2.5-7.5i\right)})
Multiply both numerator and denominator of \frac{40+20i}{2.5+7.5i} by the complex conjugate of the denominator, 2.5-7.5i.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{2.5^{2}-7.5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{62.5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)i^{2}}{62.5})
Multiply complex numbers 40+20i and 2.5-7.5i like you multiply binomials.
Re(\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right)}{62.5})
By definition, i^{2} is -1.
Re(\frac{100-300i+50i+150}{62.5})
Do the multiplications in 40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right).
Re(\frac{100+150+\left(-300+50\right)i}{62.5})
Combine the real and imaginary parts in 100-300i+50i+150.
Re(\frac{250-250i}{62.5})
Do the additions in 100+150+\left(-300+50\right)i.
Re(4-4i)
Divide 250-250i by 62.5 to get 4-4i.
4
The real part of 4-4i is 4.