Evaluate
4-4i
Real Part
4
Share
Copied to clipboard
\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{\left(2.5+7.5i\right)\left(2.5-7.5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2.5-7.5i.
\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{2.5^{2}-7.5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{62.5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)i^{2}}{62.5}
Multiply complex numbers 40+20i and 2.5-7.5i like you multiply binomials.
\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right)}{62.5}
By definition, i^{2} is -1.
\frac{100-300i+50i+150}{62.5}
Do the multiplications in 40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right).
\frac{100+150+\left(-300+50\right)i}{62.5}
Combine the real and imaginary parts in 100-300i+50i+150.
\frac{250-250i}{62.5}
Do the additions in 100+150+\left(-300+50\right)i.
4-4i
Divide 250-250i by 62.5 to get 4-4i.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{\left(2.5+7.5i\right)\left(2.5-7.5i\right)})
Multiply both numerator and denominator of \frac{40+20i}{2.5+7.5i} by the complex conjugate of the denominator, 2.5-7.5i.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{2.5^{2}-7.5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(40+20i\right)\left(2.5-7.5i\right)}{62.5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)i^{2}}{62.5})
Multiply complex numbers 40+20i and 2.5-7.5i like you multiply binomials.
Re(\frac{40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right)}{62.5})
By definition, i^{2} is -1.
Re(\frac{100-300i+50i+150}{62.5})
Do the multiplications in 40\times 2.5+40\times \left(-7.5i\right)+20i\times 2.5+20\left(-7.5\right)\left(-1\right).
Re(\frac{100+150+\left(-300+50\right)i}{62.5})
Combine the real and imaginary parts in 100-300i+50i+150.
Re(\frac{250-250i}{62.5})
Do the additions in 100+150+\left(-300+50\right)i.
Re(4-4i)
Divide 250-250i by 62.5 to get 4-4i.
4
The real part of 4-4i is 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}