Solve for n
n = \frac{4494}{871} = 5\frac{139}{871} \approx 5.159586682
Share
Copied to clipboard
\left(5-n\right)\left(4.085-3.353\right)=\left(n-6\right)\left(3.353-3.214\right)
Variable n cannot be equal to any of the values 5,6 since division by zero is not defined. Multiply both sides of the equation by \left(n-6\right)\left(n-5\right), the least common multiple of 6-n,n-5.
\left(5-n\right)\times 0.732=\left(n-6\right)\left(3.353-3.214\right)
Subtract 3.353 from 4.085 to get 0.732.
3.66-0.732n=\left(n-6\right)\left(3.353-3.214\right)
Use the distributive property to multiply 5-n by 0.732.
3.66-0.732n=\left(n-6\right)\times 0.139
Subtract 3.214 from 3.353 to get 0.139.
3.66-0.732n=0.139n-0.834
Use the distributive property to multiply n-6 by 0.139.
3.66-0.732n-0.139n=-0.834
Subtract 0.139n from both sides.
3.66-0.871n=-0.834
Combine -0.732n and -0.139n to get -0.871n.
-0.871n=-0.834-3.66
Subtract 3.66 from both sides.
-0.871n=-4.494
Subtract 3.66 from -0.834 to get -4.494.
n=\frac{-4.494}{-0.871}
Divide both sides by -0.871.
n=\frac{-4494}{-871}
Expand \frac{-4.494}{-0.871} by multiplying both numerator and the denominator by 1000.
n=\frac{4494}{871}
Fraction \frac{-4494}{-871} can be simplified to \frac{4494}{871} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}