Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4z}{z^{2}-5^{2}}\times \frac{z+5}{z}
Consider \left(z-5\right)\left(z+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4z}{z^{2}-25}\times \frac{z+5}{z}
Calculate 5 to the power of 2 and get 25.
\frac{4z\left(z+5\right)}{\left(z^{2}-25\right)z}
Multiply \frac{4z}{z^{2}-25} times \frac{z+5}{z} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(z+5\right)}{z^{2}-25}
Cancel out z in both numerator and denominator.
\frac{4\left(z+5\right)}{\left(z-5\right)\left(z+5\right)}
Factor the expressions that are not already factored.
\frac{4}{z-5}
Cancel out z+5 in both numerator and denominator.
\frac{4z}{z^{2}-5^{2}}\times \frac{z+5}{z}
Consider \left(z-5\right)\left(z+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4z}{z^{2}-25}\times \frac{z+5}{z}
Calculate 5 to the power of 2 and get 25.
\frac{4z\left(z+5\right)}{\left(z^{2}-25\right)z}
Multiply \frac{4z}{z^{2}-25} times \frac{z+5}{z} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(z+5\right)}{z^{2}-25}
Cancel out z in both numerator and denominator.
\frac{4\left(z+5\right)}{\left(z-5\right)\left(z+5\right)}
Factor the expressions that are not already factored.
\frac{4}{z-5}
Cancel out z+5 in both numerator and denominator.