Evaluate
\frac{98y}{25}+\frac{99}{50}
Expand
\frac{98y}{25}+\frac{99}{50}
Graph
Share
Copied to clipboard
\frac{4y+\frac{99}{49}}{\frac{49}{49}+\frac{1}{49}}
Convert 1 to fraction \frac{49}{49}.
\frac{4y+\frac{99}{49}}{\frac{49+1}{49}}
Since \frac{49}{49} and \frac{1}{49} have the same denominator, add them by adding their numerators.
\frac{4y+\frac{99}{49}}{\frac{50}{49}}
Add 49 and 1 to get 50.
\frac{\left(4y+\frac{99}{49}\right)\times 49}{50}
Divide 4y+\frac{99}{49} by \frac{50}{49} by multiplying 4y+\frac{99}{49} by the reciprocal of \frac{50}{49}.
\frac{196y+\frac{99}{49}\times 49}{50}
Use the distributive property to multiply 4y+\frac{99}{49} by 49.
\frac{196y+99}{50}
Cancel out 49 and 49.
\frac{4y+\frac{99}{49}}{\frac{49}{49}+\frac{1}{49}}
Convert 1 to fraction \frac{49}{49}.
\frac{4y+\frac{99}{49}}{\frac{49+1}{49}}
Since \frac{49}{49} and \frac{1}{49} have the same denominator, add them by adding their numerators.
\frac{4y+\frac{99}{49}}{\frac{50}{49}}
Add 49 and 1 to get 50.
\frac{\left(4y+\frac{99}{49}\right)\times 49}{50}
Divide 4y+\frac{99}{49} by \frac{50}{49} by multiplying 4y+\frac{99}{49} by the reciprocal of \frac{50}{49}.
\frac{196y+\frac{99}{49}\times 49}{50}
Use the distributive property to multiply 4y+\frac{99}{49} by 49.
\frac{196y+99}{50}
Cancel out 49 and 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}