\frac { 4 x - 15 } { 05 } - \frac { 5 x - 0,3 } { 0,2 } = \frac { 12 x } { 0,1 } + 3
Solve for x
x=-\frac{45}{1442}\approx -0,031206657
Graph
Share
Copied to clipboard
4x-15-5\times \frac{5x-0,3}{0,2}=5\times \frac{12x}{0,1}+15
Multiply both sides of the equation by 5.
4x-15-5\times \frac{5x-0,3}{0,2}=5\times 120x+15
Divide 12x by 0,1 to get 120x.
4x-15-5\times \frac{5x-0,3}{0,2}=600x+15
Multiply 5 and 120 to get 600.
4x-15-5\left(\frac{5x}{0,2}+\frac{-0,3}{0,2}\right)=600x+15
Divide each term of 5x-0,3 by 0,2 to get \frac{5x}{0,2}+\frac{-0,3}{0,2}.
4x-15-5\left(25x+\frac{-0,3}{0,2}\right)=600x+15
Divide 5x by 0,2 to get 25x.
4x-15-5\left(25x+\frac{-3}{2}\right)=600x+15
Expand \frac{-0,3}{0,2} by multiplying both numerator and the denominator by 10.
4x-15-5\left(25x-\frac{3}{2}\right)=600x+15
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
4x-15-125x-5\left(-\frac{3}{2}\right)=600x+15
Use the distributive property to multiply -5 by 25x-\frac{3}{2}.
4x-15-125x+\frac{-5\left(-3\right)}{2}=600x+15
Express -5\left(-\frac{3}{2}\right) as a single fraction.
4x-15-125x+\frac{15}{2}=600x+15
Multiply -5 and -3 to get 15.
-121x-15+\frac{15}{2}=600x+15
Combine 4x and -125x to get -121x.
-121x-\frac{30}{2}+\frac{15}{2}=600x+15
Convert -15 to fraction -\frac{30}{2}.
-121x+\frac{-30+15}{2}=600x+15
Since -\frac{30}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
-121x-\frac{15}{2}=600x+15
Add -30 and 15 to get -15.
-121x-\frac{15}{2}-600x=15
Subtract 600x from both sides.
-721x-\frac{15}{2}=15
Combine -121x and -600x to get -721x.
-721x=15+\frac{15}{2}
Add \frac{15}{2} to both sides.
-721x=\frac{30}{2}+\frac{15}{2}
Convert 15 to fraction \frac{30}{2}.
-721x=\frac{30+15}{2}
Since \frac{30}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
-721x=\frac{45}{2}
Add 30 and 15 to get 45.
x=\frac{\frac{45}{2}}{-721}
Divide both sides by -721.
x=\frac{45}{2\left(-721\right)}
Express \frac{\frac{45}{2}}{-721} as a single fraction.
x=\frac{45}{-1442}
Multiply 2 and -721 to get -1442.
x=-\frac{45}{1442}
Fraction \frac{45}{-1442} can be rewritten as -\frac{45}{1442} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}