Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x-12}{\left(3-x\right)^{2}}+\frac{5x+3}{x\left(-x+3\right)}-\frac{1}{x}
Factor 3x-x^{2}.
\frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}}+\frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3-x\right)^{2} and x\left(-x+3\right) is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{4x-12}{\left(3-x\right)^{2}} times \frac{x\left(-x+3\right)}{x\left(-x+3\right)}. Multiply \frac{5x+3}{x\left(-x+3\right)} times \frac{\left(-x+3\right)^{2}}{\left(-x+3\right)^{2}}.
\frac{\left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Since \frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Do the multiplications in \left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Combine like terms in -4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+3\right)\left(-x+3\right)^{2} and x is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{1}{x} times \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Since \frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Do the multiplications in x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Combine like terms in x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27.
\frac{2x\left(x-3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(x-3\right)^{2}}{-x^{3}+9x^{2}-27x+27}
Expand \left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{-x+3}
Cancel out \left(x-3\right)^{2} in both numerator and denominator.
\frac{4x-12}{\left(3-x\right)^{2}}+\frac{5x+3}{x\left(-x+3\right)}-\frac{1}{x}
Factor 3x-x^{2}.
\frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}}+\frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3-x\right)^{2} and x\left(-x+3\right) is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{4x-12}{\left(3-x\right)^{2}} times \frac{x\left(-x+3\right)}{x\left(-x+3\right)}. Multiply \frac{5x+3}{x\left(-x+3\right)} times \frac{\left(-x+3\right)^{2}}{\left(-x+3\right)^{2}}.
\frac{\left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Since \frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Do the multiplications in \left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Combine like terms in -4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+3\right)\left(-x+3\right)^{2} and x is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{1}{x} times \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Since \frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Do the multiplications in x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Combine like terms in x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27.
\frac{2x\left(x-3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(x-3\right)^{2}}{-x^{3}+9x^{2}-27x+27}
Expand \left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{-x+3}
Cancel out \left(x-3\right)^{2} in both numerator and denominator.