Evaluate
\frac{2}{3-x}
Expand
-\frac{2}{x-3}
Graph
Share
Copied to clipboard
\frac{4x-12}{\left(3-x\right)^{2}}+\frac{5x+3}{x\left(-x+3\right)}-\frac{1}{x}
Factor 3x-x^{2}.
\frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}}+\frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3-x\right)^{2} and x\left(-x+3\right) is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{4x-12}{\left(3-x\right)^{2}} times \frac{x\left(-x+3\right)}{x\left(-x+3\right)}. Multiply \frac{5x+3}{x\left(-x+3\right)} times \frac{\left(-x+3\right)^{2}}{\left(-x+3\right)^{2}}.
\frac{\left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Since \frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Do the multiplications in \left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Combine like terms in -4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+3\right)\left(-x+3\right)^{2} and x is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{1}{x} times \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Since \frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Do the multiplications in x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Combine like terms in x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27.
\frac{2x\left(x-3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(x-3\right)^{2}}{-x^{3}+9x^{2}-27x+27}
Expand \left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{-x+3}
Cancel out \left(x-3\right)^{2} in both numerator and denominator.
\frac{4x-12}{\left(3-x\right)^{2}}+\frac{5x+3}{x\left(-x+3\right)}-\frac{1}{x}
Factor 3x-x^{2}.
\frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}}+\frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3-x\right)^{2} and x\left(-x+3\right) is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{4x-12}{\left(3-x\right)^{2}} times \frac{x\left(-x+3\right)}{x\left(-x+3\right)}. Multiply \frac{5x+3}{x\left(-x+3\right)} times \frac{\left(-x+3\right)^{2}}{\left(-x+3\right)^{2}}.
\frac{\left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Since \frac{\left(4x-12\right)x\left(-x+3\right)}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(5x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Do the multiplications in \left(4x-12\right)x\left(-x+3\right)+\left(5x+3\right)\left(-x+3\right)^{2}.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{1}{x}
Combine like terms in -4x^{3}+12x^{2}+12x^{2}-36x+5x^{3}-30x^{2}+45x+3x^{2}-18x+27.
\frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}}-\frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(-x+3\right)\left(-x+3\right)^{2} and x is x\left(-x+3\right)\left(-x+3\right)^{2}. Multiply \frac{1}{x} times \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Since \frac{x^{3}-3x^{2}-9x+27}{x\left(-x+3\right)\left(-x+3\right)^{2}} and \frac{\left(-x+3\right)\left(-x+3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Do the multiplications in x^{3}-3x^{2}-9x+27-\left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Combine like terms in x^{3}-3x^{2}-9x+27+x^{3}-6x^{2}+9x-3x^{2}+18x-27.
\frac{2x\left(x-3\right)^{2}}{x\left(-x+3\right)\left(-x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{2x^{3}-12x^{2}+18x}{x\left(-x+3\right)\left(-x+3\right)^{2}}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(-x+3\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{2\left(x-3\right)^{2}}{-x^{3}+9x^{2}-27x+27}
Expand \left(-x+3\right)\left(-x+3\right)^{2}.
\frac{2\left(x-3\right)^{2}}{\left(-x+3\right)\left(x-3\right)^{2}}
Factor the expressions that are not already factored.
\frac{2}{-x+3}
Cancel out \left(x-3\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}