Solve for x
x=13
Graph
Share
Copied to clipboard
41\left(4x-10\right)+41\left(2x-5\right)\left(-2\right)=\left(2x-5\right)\left(3x-39\right)
Variable x cannot be equal to \frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by 41\left(2x-5\right), the least common multiple of 2x-5,41.
164x-410+41\left(2x-5\right)\left(-2\right)=\left(2x-5\right)\left(3x-39\right)
Use the distributive property to multiply 41 by 4x-10.
164x-410-82\left(2x-5\right)=\left(2x-5\right)\left(3x-39\right)
Multiply 41 and -2 to get -82.
164x-410-164x+410=\left(2x-5\right)\left(3x-39\right)
Use the distributive property to multiply -82 by 2x-5.
-410+410=\left(2x-5\right)\left(3x-39\right)
Combine 164x and -164x to get 0.
0=\left(2x-5\right)\left(3x-39\right)
Add -410 and 410 to get 0.
0=6x^{2}-93x+195
Use the distributive property to multiply 2x-5 by 3x-39 and combine like terms.
6x^{2}-93x+195=0
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\left(-93\right)±\sqrt{\left(-93\right)^{2}-4\times 6\times 195}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -93 for b, and 195 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-93\right)±\sqrt{8649-4\times 6\times 195}}{2\times 6}
Square -93.
x=\frac{-\left(-93\right)±\sqrt{8649-24\times 195}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-93\right)±\sqrt{8649-4680}}{2\times 6}
Multiply -24 times 195.
x=\frac{-\left(-93\right)±\sqrt{3969}}{2\times 6}
Add 8649 to -4680.
x=\frac{-\left(-93\right)±63}{2\times 6}
Take the square root of 3969.
x=\frac{93±63}{2\times 6}
The opposite of -93 is 93.
x=\frac{93±63}{12}
Multiply 2 times 6.
x=\frac{156}{12}
Now solve the equation x=\frac{93±63}{12} when ± is plus. Add 93 to 63.
x=13
Divide 156 by 12.
x=\frac{30}{12}
Now solve the equation x=\frac{93±63}{12} when ± is minus. Subtract 63 from 93.
x=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
x=13 x=\frac{5}{2}
The equation is now solved.
x=13
Variable x cannot be equal to \frac{5}{2}.
41\left(4x-10\right)+41\left(2x-5\right)\left(-2\right)=\left(2x-5\right)\left(3x-39\right)
Variable x cannot be equal to \frac{5}{2} since division by zero is not defined. Multiply both sides of the equation by 41\left(2x-5\right), the least common multiple of 2x-5,41.
164x-410+41\left(2x-5\right)\left(-2\right)=\left(2x-5\right)\left(3x-39\right)
Use the distributive property to multiply 41 by 4x-10.
164x-410-82\left(2x-5\right)=\left(2x-5\right)\left(3x-39\right)
Multiply 41 and -2 to get -82.
164x-410-164x+410=\left(2x-5\right)\left(3x-39\right)
Use the distributive property to multiply -82 by 2x-5.
-410+410=\left(2x-5\right)\left(3x-39\right)
Combine 164x and -164x to get 0.
0=\left(2x-5\right)\left(3x-39\right)
Add -410 and 410 to get 0.
0=6x^{2}-93x+195
Use the distributive property to multiply 2x-5 by 3x-39 and combine like terms.
6x^{2}-93x+195=0
Swap sides so that all variable terms are on the left hand side.
6x^{2}-93x=-195
Subtract 195 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}-93x}{6}=-\frac{195}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{93}{6}\right)x=-\frac{195}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{31}{2}x=-\frac{195}{6}
Reduce the fraction \frac{-93}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{31}{2}x=-\frac{65}{2}
Reduce the fraction \frac{-195}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{31}{2}x+\left(-\frac{31}{4}\right)^{2}=-\frac{65}{2}+\left(-\frac{31}{4}\right)^{2}
Divide -\frac{31}{2}, the coefficient of the x term, by 2 to get -\frac{31}{4}. Then add the square of -\frac{31}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{31}{2}x+\frac{961}{16}=-\frac{65}{2}+\frac{961}{16}
Square -\frac{31}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{31}{2}x+\frac{961}{16}=\frac{441}{16}
Add -\frac{65}{2} to \frac{961}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{31}{4}\right)^{2}=\frac{441}{16}
Factor x^{2}-\frac{31}{2}x+\frac{961}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{31}{4}\right)^{2}}=\sqrt{\frac{441}{16}}
Take the square root of both sides of the equation.
x-\frac{31}{4}=\frac{21}{4} x-\frac{31}{4}=-\frac{21}{4}
Simplify.
x=13 x=\frac{5}{2}
Add \frac{31}{4} to both sides of the equation.
x=13
Variable x cannot be equal to \frac{5}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}