Solve for x
x<\frac{36}{5}
Graph
Share
Copied to clipboard
4x-45<27-3\times 2x
Multiply both sides of the equation by 9, the least common multiple of 9,3. Since 9 is positive, the inequality direction remains the same.
4x-45<27-6x
Multiply -3 and 2 to get -6.
4x-45+6x<27
Add 6x to both sides.
10x-45<27
Combine 4x and 6x to get 10x.
10x<27+45
Add 45 to both sides.
10x<72
Add 27 and 45 to get 72.
x<\frac{72}{10}
Divide both sides by 10. Since 10 is positive, the inequality direction remains the same.
x<\frac{36}{5}
Reduce the fraction \frac{72}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}