Solve for y
y=\frac{4x}{\left(x+4\right)\left(x+16\right)}
x\neq -16\text{ and }x\neq -4
Solve for x
\left\{\begin{matrix}x=-\frac{2\left(\sqrt{\left(y-1\right)\left(9y-1\right)}+5y-1\right)}{y}\text{; }x=-\frac{2\left(-\sqrt{\left(y-1\right)\left(9y-1\right)}+5y-1\right)}{y}\text{, }&y\geq 1\text{ or }\left(y\neq 0\text{ and }y\leq \frac{1}{9}\right)\\x=0\text{, }&y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
4x=y\left(x+4\right)\left(x+16\right)
Multiply both sides of the equation by \left(x+4\right)\left(x+16\right).
4x=\left(yx+4y\right)\left(x+16\right)
Use the distributive property to multiply y by x+4.
4x=yx^{2}+20yx+64y
Use the distributive property to multiply yx+4y by x+16 and combine like terms.
yx^{2}+20yx+64y=4x
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+20x+64\right)y=4x
Combine all terms containing y.
\frac{\left(x^{2}+20x+64\right)y}{x^{2}+20x+64}=\frac{4x}{x^{2}+20x+64}
Divide both sides by x^{2}+20x+64.
y=\frac{4x}{x^{2}+20x+64}
Dividing by x^{2}+20x+64 undoes the multiplication by x^{2}+20x+64.
y=\frac{4x}{\left(x+4\right)\left(x+16\right)}
Divide 4x by x^{2}+20x+64.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}