Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}=\frac{4}{\sqrt{2}}
Rationalize the denominator of \frac{4x}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}=\frac{4}{\sqrt{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{2-6}=\frac{4}{\sqrt{2}}
Square \sqrt{2}. Square \sqrt{6}.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{-4}=\frac{4}{\sqrt{2}}
Subtract 6 from 2 to get -4.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{-4}=\frac{4\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{-4}=\frac{4\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{4x\left(\sqrt{2}-\sqrt{6}\right)}{-4}=2\sqrt{2}
Divide 4\sqrt{2} by 2 to get 2\sqrt{2}.
-x\left(\sqrt{2}-\sqrt{6}\right)=2\sqrt{2}
Cancel out -4 and -4.
-x\sqrt{2}+x\sqrt{6}=2\sqrt{2}
Use the distributive property to multiply -x by \sqrt{2}-\sqrt{6}.
\left(-\sqrt{2}+\sqrt{6}\right)x=2\sqrt{2}
Combine all terms containing x.
\left(\sqrt{6}-\sqrt{2}\right)x=2\sqrt{2}
The equation is in standard form.
\frac{\left(\sqrt{6}-\sqrt{2}\right)x}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Divide both sides by -\sqrt{2}+\sqrt{6}.
x=\frac{2\sqrt{2}}{\sqrt{6}-\sqrt{2}}
Dividing by -\sqrt{2}+\sqrt{6} undoes the multiplication by -\sqrt{2}+\sqrt{6}.
x=\sqrt{3}+1
Divide 2\sqrt{2} by -\sqrt{2}+\sqrt{6}.