Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+\left(x-5\right)\left(2x-24x-120\right)=0
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)^{2}, the least common multiple of x^{2}+25-10x,x-5.
4x^{2}+\left(x-5\right)\left(-22x-120\right)=0
Combine 2x and -24x to get -22x.
4x^{2}-22x^{2}-10x+600=0
Use the distributive property to multiply x-5 by -22x-120 and combine like terms.
-18x^{2}-10x+600=0
Combine 4x^{2} and -22x^{2} to get -18x^{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-18\right)\times 600}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, -10 for b, and 600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-18\right)\times 600}}{2\left(-18\right)}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+72\times 600}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-\left(-10\right)±\sqrt{100+43200}}{2\left(-18\right)}
Multiply 72 times 600.
x=\frac{-\left(-10\right)±\sqrt{43300}}{2\left(-18\right)}
Add 100 to 43200.
x=\frac{-\left(-10\right)±10\sqrt{433}}{2\left(-18\right)}
Take the square root of 43300.
x=\frac{10±10\sqrt{433}}{2\left(-18\right)}
The opposite of -10 is 10.
x=\frac{10±10\sqrt{433}}{-36}
Multiply 2 times -18.
x=\frac{10\sqrt{433}+10}{-36}
Now solve the equation x=\frac{10±10\sqrt{433}}{-36} when ± is plus. Add 10 to 10\sqrt{433}.
x=\frac{-5\sqrt{433}-5}{18}
Divide 10+10\sqrt{433} by -36.
x=\frac{10-10\sqrt{433}}{-36}
Now solve the equation x=\frac{10±10\sqrt{433}}{-36} when ± is minus. Subtract 10\sqrt{433} from 10.
x=\frac{5\sqrt{433}-5}{18}
Divide 10-10\sqrt{433} by -36.
x=\frac{-5\sqrt{433}-5}{18} x=\frac{5\sqrt{433}-5}{18}
The equation is now solved.
4x^{2}+\left(x-5\right)\left(2x-24x-120\right)=0
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)^{2}, the least common multiple of x^{2}+25-10x,x-5.
4x^{2}+\left(x-5\right)\left(-22x-120\right)=0
Combine 2x and -24x to get -22x.
4x^{2}-22x^{2}-10x+600=0
Use the distributive property to multiply x-5 by -22x-120 and combine like terms.
-18x^{2}-10x+600=0
Combine 4x^{2} and -22x^{2} to get -18x^{2}.
-18x^{2}-10x=-600
Subtract 600 from both sides. Anything subtracted from zero gives its negation.
\frac{-18x^{2}-10x}{-18}=-\frac{600}{-18}
Divide both sides by -18.
x^{2}+\left(-\frac{10}{-18}\right)x=-\frac{600}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}+\frac{5}{9}x=-\frac{600}{-18}
Reduce the fraction \frac{-10}{-18} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{9}x=\frac{100}{3}
Reduce the fraction \frac{-600}{-18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\frac{100}{3}+\left(\frac{5}{18}\right)^{2}
Divide \frac{5}{9}, the coefficient of the x term, by 2 to get \frac{5}{18}. Then add the square of \frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{100}{3}+\frac{25}{324}
Square \frac{5}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{10825}{324}
Add \frac{100}{3} to \frac{25}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{18}\right)^{2}=\frac{10825}{324}
Factor x^{2}+\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{10825}{324}}
Take the square root of both sides of the equation.
x+\frac{5}{18}=\frac{5\sqrt{433}}{18} x+\frac{5}{18}=-\frac{5\sqrt{433}}{18}
Simplify.
x=\frac{5\sqrt{433}-5}{18} x=\frac{-5\sqrt{433}-5}{18}
Subtract \frac{5}{18} from both sides of the equation.