Solve for x
x\neq -\frac{3}{2}
Graph
Share
Copied to clipboard
4x^{2}+12x+9=2x\left(2x+3\right)+\left(2x+3\right)\times 3
Variable x cannot be equal to -\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 2x+3.
4x^{2}+12x+9=4x^{2}+6x+\left(2x+3\right)\times 3
Use the distributive property to multiply 2x by 2x+3.
4x^{2}+12x+9=4x^{2}+6x+6x+9
Use the distributive property to multiply 2x+3 by 3.
4x^{2}+12x+9=4x^{2}+12x+9
Combine 6x and 6x to get 12x.
4x^{2}+12x+9-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
12x+9=12x+9
Combine 4x^{2} and -4x^{2} to get 0.
12x+9-12x=9
Subtract 12x from both sides.
9=9
Combine 12x and -12x to get 0.
\text{true}
Compare 9 and 9.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus -\frac{3}{2}
Variable x cannot be equal to -\frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}