Solve for x
x = -\frac{55}{41} = -1\frac{14}{41} \approx -1.341463415
Graph
Share
Copied to clipboard
5\left(4x+5\right)+30=-3\times 7x
Multiply both sides of the equation by 15, the least common multiple of 3,5.
20x+25+30=-3\times 7x
Use the distributive property to multiply 5 by 4x+5.
20x+55=-3\times 7x
Add 25 and 30 to get 55.
20x+55=-21x
Multiply -3 and 7 to get -21.
20x+55+21x=0
Add 21x to both sides.
41x+55=0
Combine 20x and 21x to get 41x.
41x=-55
Subtract 55 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-55}{41}
Divide both sides by 41.
x=-\frac{55}{41}
Fraction \frac{-55}{41} can be rewritten as -\frac{55}{41} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}