Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4x+11}{2\left(x-3\right)}+\frac{3x}{\left(x-8\right)\left(x-3\right)}
Factor 2x-6. Factor x^{2}-11x+24.
\frac{\left(4x+11\right)\left(x-8\right)}{2\left(x-8\right)\left(x-3\right)}+\frac{2\times 3x}{2\left(x-8\right)\left(x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-3\right) and \left(x-8\right)\left(x-3\right) is 2\left(x-8\right)\left(x-3\right). Multiply \frac{4x+11}{2\left(x-3\right)} times \frac{x-8}{x-8}. Multiply \frac{3x}{\left(x-8\right)\left(x-3\right)} times \frac{2}{2}.
\frac{\left(4x+11\right)\left(x-8\right)+2\times 3x}{2\left(x-8\right)\left(x-3\right)}
Since \frac{\left(4x+11\right)\left(x-8\right)}{2\left(x-8\right)\left(x-3\right)} and \frac{2\times 3x}{2\left(x-8\right)\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-32x+11x-88+6x}{2\left(x-8\right)\left(x-3\right)}
Do the multiplications in \left(4x+11\right)\left(x-8\right)+2\times 3x.
\frac{4x^{2}-15x-88}{2\left(x-8\right)\left(x-3\right)}
Combine like terms in 4x^{2}-32x+11x-88+6x.
\frac{4\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{2\left(x-8\right)\left(x-3\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-15x-88}{2\left(x-8\right)\left(x-3\right)}.
\frac{2\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{\left(x-8\right)\left(x-3\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{x^{2}-11x+24}
Expand \left(x-8\right)\left(x-3\right).
\frac{2\left(x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{x^{2}-11x+24}
To find the opposite of -\frac{1}{8}\sqrt{1633}+\frac{15}{8}, find the opposite of each term.
\frac{2\left(x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)\left(x-\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)}{x^{2}-11x+24}
To find the opposite of \frac{1}{8}\sqrt{1633}+\frac{15}{8}, find the opposite of each term.
\frac{\left(2x+\frac{1}{4}\sqrt{1633}-\frac{15}{4}\right)\left(x-\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)}{x^{2}-11x+24}
Use the distributive property to multiply 2 by x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}.
\frac{2x^{2}-\frac{15}{2}x-\frac{1}{32}\left(\sqrt{1633}\right)^{2}+\frac{225}{32}}{x^{2}-11x+24}
Use the distributive property to multiply 2x+\frac{1}{4}\sqrt{1633}-\frac{15}{4} by x-\frac{1}{8}\sqrt{1633}-\frac{15}{8} and combine like terms.
\frac{2x^{2}-\frac{15}{2}x-\frac{1}{32}\times 1633+\frac{225}{32}}{x^{2}-11x+24}
The square of \sqrt{1633} is 1633.
\frac{2x^{2}-\frac{15}{2}x-\frac{1633}{32}+\frac{225}{32}}{x^{2}-11x+24}
Multiply -\frac{1}{32} and 1633 to get -\frac{1633}{32}.
\frac{2x^{2}-\frac{15}{2}x-44}{x^{2}-11x+24}
Add -\frac{1633}{32} and \frac{225}{32} to get -44.
\frac{4x+11}{2\left(x-3\right)}+\frac{3x}{\left(x-8\right)\left(x-3\right)}
Factor 2x-6. Factor x^{2}-11x+24.
\frac{\left(4x+11\right)\left(x-8\right)}{2\left(x-8\right)\left(x-3\right)}+\frac{2\times 3x}{2\left(x-8\right)\left(x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-3\right) and \left(x-8\right)\left(x-3\right) is 2\left(x-8\right)\left(x-3\right). Multiply \frac{4x+11}{2\left(x-3\right)} times \frac{x-8}{x-8}. Multiply \frac{3x}{\left(x-8\right)\left(x-3\right)} times \frac{2}{2}.
\frac{\left(4x+11\right)\left(x-8\right)+2\times 3x}{2\left(x-8\right)\left(x-3\right)}
Since \frac{\left(4x+11\right)\left(x-8\right)}{2\left(x-8\right)\left(x-3\right)} and \frac{2\times 3x}{2\left(x-8\right)\left(x-3\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{2}-32x+11x-88+6x}{2\left(x-8\right)\left(x-3\right)}
Do the multiplications in \left(4x+11\right)\left(x-8\right)+2\times 3x.
\frac{4x^{2}-15x-88}{2\left(x-8\right)\left(x-3\right)}
Combine like terms in 4x^{2}-32x+11x-88+6x.
\frac{4\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{2\left(x-8\right)\left(x-3\right)}
Factor the expressions that are not already factored in \frac{4x^{2}-15x-88}{2\left(x-8\right)\left(x-3\right)}.
\frac{2\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{\left(x-8\right)\left(x-3\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(x-\left(-\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{x^{2}-11x+24}
Expand \left(x-8\right)\left(x-3\right).
\frac{2\left(x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)\left(x-\left(\frac{1}{8}\sqrt{1633}+\frac{15}{8}\right)\right)}{x^{2}-11x+24}
To find the opposite of -\frac{1}{8}\sqrt{1633}+\frac{15}{8}, find the opposite of each term.
\frac{2\left(x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)\left(x-\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)}{x^{2}-11x+24}
To find the opposite of \frac{1}{8}\sqrt{1633}+\frac{15}{8}, find the opposite of each term.
\frac{\left(2x+\frac{1}{4}\sqrt{1633}-\frac{15}{4}\right)\left(x-\frac{1}{8}\sqrt{1633}-\frac{15}{8}\right)}{x^{2}-11x+24}
Use the distributive property to multiply 2 by x+\frac{1}{8}\sqrt{1633}-\frac{15}{8}.
\frac{2x^{2}-\frac{15}{2}x-\frac{1}{32}\left(\sqrt{1633}\right)^{2}+\frac{225}{32}}{x^{2}-11x+24}
Use the distributive property to multiply 2x+\frac{1}{4}\sqrt{1633}-\frac{15}{4} by x-\frac{1}{8}\sqrt{1633}-\frac{15}{8} and combine like terms.
\frac{2x^{2}-\frac{15}{2}x-\frac{1}{32}\times 1633+\frac{225}{32}}{x^{2}-11x+24}
The square of \sqrt{1633} is 1633.
\frac{2x^{2}-\frac{15}{2}x-\frac{1633}{32}+\frac{225}{32}}{x^{2}-11x+24}
Multiply -\frac{1}{32} and 1633 to get -\frac{1633}{32}.
\frac{2x^{2}-\frac{15}{2}x-44}{x^{2}-11x+24}
Add -\frac{1633}{32} and \frac{225}{32} to get -44.