Solve for s
s = \frac{70}{9} = 7\frac{7}{9} \approx 7.777777778
Share
Copied to clipboard
4s+\left(s-10\right)\times 6=s+10
Variable s cannot be equal to any of the values -10,10 since division by zero is not defined. Multiply both sides of the equation by \left(s-10\right)\left(s+10\right), the least common multiple of s^{2}-100,s+10,s-10.
4s+6s-60=s+10
Use the distributive property to multiply s-10 by 6.
10s-60=s+10
Combine 4s and 6s to get 10s.
10s-60-s=10
Subtract s from both sides.
9s-60=10
Combine 10s and -s to get 9s.
9s=10+60
Add 60 to both sides.
9s=70
Add 10 and 60 to get 70.
s=\frac{70}{9}
Divide both sides by 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}