Solve for k
\left\{\begin{matrix}k=\frac{7t}{4p}\text{, }&t\neq 0\text{ and }p\neq 0\\k\neq 0\text{, }&p=0\text{ and }t=0\end{matrix}\right.
Solve for p
p=\frac{7t}{4k}
k\neq 0
Share
Copied to clipboard
k\times 4p=7t
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7k, the least common multiple of 7,k.
4kp=7t
Reorder the terms.
4pk=7t
The equation is in standard form.
\frac{4pk}{4p}=\frac{7t}{4p}
Divide both sides by 4p.
k=\frac{7t}{4p}
Dividing by 4p undoes the multiplication by 4p.
k=\frac{7t}{4p}\text{, }k\neq 0
Variable k cannot be equal to 0.
k\times 4p=7t
Multiply both sides of the equation by 7k, the least common multiple of 7,k.
4kp=7t
Reorder the terms.
\frac{4kp}{4k}=\frac{7t}{4k}
Divide both sides by 4k.
p=\frac{7t}{4k}
Dividing by 4k undoes the multiplication by 4k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}