Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4m^{2}n^{2}\times 18m^{4}n^{3}}{\left(2m^{2}\right)^{3}\times 3\times \left(2mn^{2}\right)^{2}}
Divide \frac{4m^{2}n^{2}}{\left(2m^{2}\right)^{3}} by \frac{3\times \left(2mn^{2}\right)^{2}}{18m^{4}n^{3}} by multiplying \frac{4m^{2}n^{2}}{\left(2m^{2}\right)^{3}} by the reciprocal of \frac{3\times \left(2mn^{2}\right)^{2}}{18m^{4}n^{3}}.
\frac{4\times 6m^{2}n^{2}n^{3}m^{4}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{4\times 6m^{6}n^{2}n^{3}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{4\times 6m^{6}n^{5}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{24m^{6}n^{5}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Multiply 4 and 6 to get 24.
\frac{24m^{6}n^{5}}{2^{3}\left(m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Expand \left(2m^{2}\right)^{3}.
\frac{24m^{6}n^{5}}{2^{3}m^{6}\times \left(2mn^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{24m^{6}n^{5}}{8m^{6}\times \left(2mn^{2}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{24m^{6}n^{5}}{8m^{6}\times 2^{2}m^{2}\left(n^{2}\right)^{2}}
Expand \left(2mn^{2}\right)^{2}.
\frac{24m^{6}n^{5}}{8m^{6}\times 2^{2}m^{2}n^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{24m^{6}n^{5}}{8m^{6}\times 4m^{2}n^{4}}
Calculate 2 to the power of 2 and get 4.
\frac{24m^{6}n^{5}}{32m^{6}m^{2}n^{4}}
Multiply 8 and 4 to get 32.
\frac{24m^{6}n^{5}}{32m^{8}n^{4}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{3n}{4m^{2}}
Cancel out 8n^{4}m^{6} in both numerator and denominator.
\frac{4m^{2}n^{2}\times 18m^{4}n^{3}}{\left(2m^{2}\right)^{3}\times 3\times \left(2mn^{2}\right)^{2}}
Divide \frac{4m^{2}n^{2}}{\left(2m^{2}\right)^{3}} by \frac{3\times \left(2mn^{2}\right)^{2}}{18m^{4}n^{3}} by multiplying \frac{4m^{2}n^{2}}{\left(2m^{2}\right)^{3}} by the reciprocal of \frac{3\times \left(2mn^{2}\right)^{2}}{18m^{4}n^{3}}.
\frac{4\times 6m^{2}n^{2}n^{3}m^{4}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Cancel out 3 in both numerator and denominator.
\frac{4\times 6m^{6}n^{2}n^{3}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{4\times 6m^{6}n^{5}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{24m^{6}n^{5}}{\left(2m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Multiply 4 and 6 to get 24.
\frac{24m^{6}n^{5}}{2^{3}\left(m^{2}\right)^{3}\times \left(2mn^{2}\right)^{2}}
Expand \left(2m^{2}\right)^{3}.
\frac{24m^{6}n^{5}}{2^{3}m^{6}\times \left(2mn^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{24m^{6}n^{5}}{8m^{6}\times \left(2mn^{2}\right)^{2}}
Calculate 2 to the power of 3 and get 8.
\frac{24m^{6}n^{5}}{8m^{6}\times 2^{2}m^{2}\left(n^{2}\right)^{2}}
Expand \left(2mn^{2}\right)^{2}.
\frac{24m^{6}n^{5}}{8m^{6}\times 2^{2}m^{2}n^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{24m^{6}n^{5}}{8m^{6}\times 4m^{2}n^{4}}
Calculate 2 to the power of 2 and get 4.
\frac{24m^{6}n^{5}}{32m^{6}m^{2}n^{4}}
Multiply 8 and 4 to get 32.
\frac{24m^{6}n^{5}}{32m^{8}n^{4}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{3n}{4m^{2}}
Cancel out 8n^{4}m^{6} in both numerator and denominator.