Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{4i\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+3i.
\frac{4i\left(5+3i\right)}{5^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4i\left(5+3i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i\times 5+4\times 3i^{2}}{34}
Multiply 4i times 5+3i.
\frac{4i\times 5+4\times 3\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{-12+20i}{34}
Do the multiplications in 4i\times 5+4\times 3\left(-1\right). Reorder the terms.
-\frac{6}{17}+\frac{10}{17}i
Divide -12+20i by 34 to get -\frac{6}{17}+\frac{10}{17}i.
Re(\frac{4i\left(5+3i\right)}{\left(5-3i\right)\left(5+3i\right)})
Multiply both numerator and denominator of \frac{4i}{5-3i} by the complex conjugate of the denominator, 5+3i.
Re(\frac{4i\left(5+3i\right)}{5^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{4i\left(5+3i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4i\times 5+4\times 3i^{2}}{34})
Multiply 4i times 5+3i.
Re(\frac{4i\times 5+4\times 3\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{-12+20i}{34})
Do the multiplications in 4i\times 5+4\times 3\left(-1\right). Reorder the terms.
Re(-\frac{6}{17}+\frac{10}{17}i)
Divide -12+20i by 34 to get -\frac{6}{17}+\frac{10}{17}i.
-\frac{6}{17}
The real part of -\frac{6}{17}+\frac{10}{17}i is -\frac{6}{17}.