Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4b}{\left(2b-1\right)\left(2b+1\right)}+\frac{2b+1}{3\left(-2b+1\right)}+\frac{2b-1}{4b+2}
Factor 4b^{2}-1. Factor 3-6b.
\frac{3\times 4b}{3\left(2b-1\right)\left(2b+1\right)}+\frac{\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2b-1\right)\left(2b+1\right) and 3\left(-2b+1\right) is 3\left(2b-1\right)\left(2b+1\right). Multiply \frac{4b}{\left(2b-1\right)\left(2b+1\right)} times \frac{3}{3}. Multiply \frac{2b+1}{3\left(-2b+1\right)} times \frac{-\left(2b+1\right)}{-\left(2b+1\right)}.
\frac{3\times 4b+\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Since \frac{3\times 4b}{3\left(2b-1\right)\left(2b+1\right)} and \frac{\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)} have the same denominator, add them by adding their numerators.
\frac{12b-4b^{2}-2b-2b-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Do the multiplications in 3\times 4b+\left(2b+1\right)\left(-1\right)\left(2b+1\right).
\frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Combine like terms in 12b-4b^{2}-2b-2b-1.
\frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{2\left(2b+1\right)}
Factor 4b+2.
\frac{2\left(8b-4b^{2}-1\right)}{6\left(2b-1\right)\left(2b+1\right)}+\frac{\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2b-1\right)\left(2b+1\right) and 2\left(2b+1\right) is 6\left(2b-1\right)\left(2b+1\right). Multiply \frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)} times \frac{2}{2}. Multiply \frac{2b-1}{2\left(2b+1\right)} times \frac{3\left(2b-1\right)}{3\left(2b-1\right)}.
\frac{2\left(8b-4b^{2}-1\right)+\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)}
Since \frac{2\left(8b-4b^{2}-1\right)}{6\left(2b-1\right)\left(2b+1\right)} and \frac{\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)} have the same denominator, add them by adding their numerators.
\frac{16b-8b^{2}-2+12b^{2}-6b+3-6b}{6\left(2b-1\right)\left(2b+1\right)}
Do the multiplications in 2\left(8b-4b^{2}-1\right)+\left(2b-1\right)\times 3\left(2b-1\right).
\frac{4b+4b^{2}+1}{6\left(2b-1\right)\left(2b+1\right)}
Combine like terms in 16b-8b^{2}-2+12b^{2}-6b+3-6b.
\frac{\left(2b+1\right)^{2}}{6\left(2b-1\right)\left(2b+1\right)}
Factor the expressions that are not already factored in \frac{4b+4b^{2}+1}{6\left(2b-1\right)\left(2b+1\right)}.
\frac{2b+1}{6\left(2b-1\right)}
Cancel out 2b+1 in both numerator and denominator.
\frac{2b+1}{12b-6}
Expand 6\left(2b-1\right).
\frac{4b}{\left(2b-1\right)\left(2b+1\right)}+\frac{2b+1}{3\left(-2b+1\right)}+\frac{2b-1}{4b+2}
Factor 4b^{2}-1. Factor 3-6b.
\frac{3\times 4b}{3\left(2b-1\right)\left(2b+1\right)}+\frac{\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2b-1\right)\left(2b+1\right) and 3\left(-2b+1\right) is 3\left(2b-1\right)\left(2b+1\right). Multiply \frac{4b}{\left(2b-1\right)\left(2b+1\right)} times \frac{3}{3}. Multiply \frac{2b+1}{3\left(-2b+1\right)} times \frac{-\left(2b+1\right)}{-\left(2b+1\right)}.
\frac{3\times 4b+\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Since \frac{3\times 4b}{3\left(2b-1\right)\left(2b+1\right)} and \frac{\left(2b+1\right)\left(-1\right)\left(2b+1\right)}{3\left(2b-1\right)\left(2b+1\right)} have the same denominator, add them by adding their numerators.
\frac{12b-4b^{2}-2b-2b-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Do the multiplications in 3\times 4b+\left(2b+1\right)\left(-1\right)\left(2b+1\right).
\frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{4b+2}
Combine like terms in 12b-4b^{2}-2b-2b-1.
\frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)}+\frac{2b-1}{2\left(2b+1\right)}
Factor 4b+2.
\frac{2\left(8b-4b^{2}-1\right)}{6\left(2b-1\right)\left(2b+1\right)}+\frac{\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(2b-1\right)\left(2b+1\right) and 2\left(2b+1\right) is 6\left(2b-1\right)\left(2b+1\right). Multiply \frac{8b-4b^{2}-1}{3\left(2b-1\right)\left(2b+1\right)} times \frac{2}{2}. Multiply \frac{2b-1}{2\left(2b+1\right)} times \frac{3\left(2b-1\right)}{3\left(2b-1\right)}.
\frac{2\left(8b-4b^{2}-1\right)+\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)}
Since \frac{2\left(8b-4b^{2}-1\right)}{6\left(2b-1\right)\left(2b+1\right)} and \frac{\left(2b-1\right)\times 3\left(2b-1\right)}{6\left(2b-1\right)\left(2b+1\right)} have the same denominator, add them by adding their numerators.
\frac{16b-8b^{2}-2+12b^{2}-6b+3-6b}{6\left(2b-1\right)\left(2b+1\right)}
Do the multiplications in 2\left(8b-4b^{2}-1\right)+\left(2b-1\right)\times 3\left(2b-1\right).
\frac{4b+4b^{2}+1}{6\left(2b-1\right)\left(2b+1\right)}
Combine like terms in 16b-8b^{2}-2+12b^{2}-6b+3-6b.
\frac{\left(2b+1\right)^{2}}{6\left(2b-1\right)\left(2b+1\right)}
Factor the expressions that are not already factored in \frac{4b+4b^{2}+1}{6\left(2b-1\right)\left(2b+1\right)}.
\frac{2b+1}{6\left(2b-1\right)}
Cancel out 2b+1 in both numerator and denominator.
\frac{2b+1}{12b-6}
Expand 6\left(2b-1\right).