Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{4a^{2}\left(b-a\right)}{\left(3a-3b\right)\times 2a}\times \frac{3x}{a}
Divide \frac{4a^{2}}{3a-3b} by \frac{2a}{b-a} by multiplying \frac{4a^{2}}{3a-3b} by the reciprocal of \frac{2a}{b-a}.
\frac{2a\left(-a+b\right)}{3a-3b}\times \frac{3x}{a}
Cancel out 2a in both numerator and denominator.
\frac{2a\left(-a+b\right)}{3\left(a-b\right)}\times \frac{3x}{a}
Factor the expressions that are not already factored in \frac{2a\left(-a+b\right)}{3a-3b}.
\frac{-2a\left(a-b\right)}{3\left(a-b\right)}\times \frac{3x}{a}
Extract the negative sign in -a+b.
\frac{-2a}{3}\times \frac{3x}{a}
Cancel out a-b in both numerator and denominator.
\frac{-2a\times 3x}{3a}
Multiply \frac{-2a}{3} times \frac{3x}{a} by multiplying numerator times numerator and denominator times denominator.
-2x
Cancel out 3a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4a^{2}\left(b-a\right)}{\left(3a-3b\right)\times 2a}\times \frac{3x}{a})
Divide \frac{4a^{2}}{3a-3b} by \frac{2a}{b-a} by multiplying \frac{4a^{2}}{3a-3b} by the reciprocal of \frac{2a}{b-a}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2a\left(-a+b\right)}{3a-3b}\times \frac{3x}{a})
Cancel out 2a in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2a\left(-a+b\right)}{3\left(a-b\right)}\times \frac{3x}{a})
Factor the expressions that are not already factored in \frac{2a\left(-a+b\right)}{3a-3b}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2a\left(a-b\right)}{3\left(a-b\right)}\times \frac{3x}{a})
Extract the negative sign in -a+b.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2a}{3}\times \frac{3x}{a})
Cancel out a-b in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2a\times 3x}{3a})
Multiply \frac{-2a}{3} times \frac{3x}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(-2x)
Cancel out 3a in both numerator and denominator.
-2x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-2x^{0}
Subtract 1 from 1.
-2
For any term t except 0, t^{0}=1.