\frac { 4 R _ { 1 } } { R _ { 2 } } \frac { d ^ { 2 } r } { d t ^ { 2 } } + \frac { 12 \cdot R _ { 1 } } { R _ { 2 } } \frac { d r } { d t } = q
Solve for R_1 (complex solution)
R_{1}\in \mathrm{C}
q=0\text{ and }R_{2}\neq 0
Solve for R_1
R_{1}\in \mathrm{R}
q=0\text{ and }R_{2}\neq 0
Solve for R_2
R_{2}\neq 0
q=0\text{ and }R_{2}\neq 0
Share
Copied to clipboard
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Multiply both sides of the equation by R_{2}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=R_{2}q
Reorder the terms.
\left(4\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12\frac{\mathrm{d}(r)}{\mathrm{d}t}\right)R_{1}=R_{2}q
Combine all terms containing R_{1}.
0=R_{2}q
The equation is in standard form.
R_{1}\in
This is false for any R_{1}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Multiply both sides of the equation by R_{2}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=R_{2}q
Reorder the terms.
\left(4\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12\frac{\mathrm{d}(r)}{\mathrm{d}t}\right)R_{1}=R_{2}q
Combine all terms containing R_{1}.
0=R_{2}q
The equation is in standard form.
R_{1}\in
This is false for any R_{1}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Variable R_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R_{2}.
qR_{2}=4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}
Swap sides so that all variable terms are on the left hand side.
qR_{2}=0
The equation is in standard form.
R_{2}=0
Divide 0 by q.
R_{2}\in \emptyset
Variable R_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}