Skip to main content
Solve for R_1 (complex solution)
Tick mark Image
Solve for R_1
Tick mark Image
Solve for R_2
Tick mark Image

Similar Problems from Web Search

Share

4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Multiply both sides of the equation by R_{2}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=R_{2}q
Reorder the terms.
\left(4\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12\frac{\mathrm{d}(r)}{\mathrm{d}t}\right)R_{1}=R_{2}q
Combine all terms containing R_{1}.
0=R_{2}q
The equation is in standard form.
R_{1}\in
This is false for any R_{1}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Multiply both sides of the equation by R_{2}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=R_{2}q
Reorder the terms.
\left(4\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12\frac{\mathrm{d}(r)}{\mathrm{d}t}\right)R_{1}=R_{2}q
Combine all terms containing R_{1}.
0=R_{2}q
The equation is in standard form.
R_{1}\in
This is false for any R_{1}.
4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}=qR_{2}
Variable R_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R_{2}.
qR_{2}=4R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t^{2}}+12R_{1}\frac{\mathrm{d}(r)}{\mathrm{d}t}
Swap sides so that all variable terms are on the left hand side.
qR_{2}=0
The equation is in standard form.
R_{2}=0
Divide 0 by q.
R_{2}\in \emptyset
Variable R_{2} cannot be equal to 0.