Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4-y}{\left(y-3\right)\left(-y-3\right)}+\frac{1-y}{\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Factor 9-y^{2}. Factor 9+6y+y^{2}.
\frac{\left(4-y\right)\left(-1\right)\left(y+3\right)}{\left(y-3\right)\left(y+3\right)^{2}}+\frac{\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-3\right)\left(-y-3\right) and \left(y+3\right)^{2} is \left(y-3\right)\left(y+3\right)^{2}. Multiply \frac{4-y}{\left(y-3\right)\left(-y-3\right)} times \frac{-\left(y+3\right)}{-\left(y+3\right)}. Multiply \frac{1-y}{\left(y+3\right)^{2}} times \frac{y-3}{y-3}.
\frac{\left(4-y\right)\left(-1\right)\left(y+3\right)+\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Since \frac{\left(4-y\right)\left(-1\right)\left(y+3\right)}{\left(y-3\right)\left(y+3\right)^{2}} and \frac{\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4y-12+y^{2}+3y+y-3-y^{2}+3y}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Do the multiplications in \left(4-y\right)\left(-1\right)\left(y+3\right)+\left(1-y\right)\left(y-3\right).
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Combine like terms in -4y-12+y^{2}+3y+y-3-y^{2}+3y.
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{\left(y+3\right)^{2}}
Factor y^{2}+6y+9.
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-3\right)\left(y+3\right)^{2} and \left(y+3\right)^{2} is \left(y-3\right)\left(y+3\right)^{2}. Multiply \frac{2+y}{\left(y+3\right)^{2}} times \frac{y-3}{y-3}.
\frac{3y-15-\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}
Since \frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}} and \frac{\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3y-15-2y+6-y^{2}+3y}{\left(y-3\right)\left(y+3\right)^{2}}
Do the multiplications in 3y-15-\left(2+y\right)\left(y-3\right).
\frac{4y-9-y^{2}}{\left(y-3\right)\left(y+3\right)^{2}}
Combine like terms in 3y-15-2y+6-y^{2}+3y.
\frac{4y-9-y^{2}}{y^{3}+3y^{2}-9y-27}
Expand \left(y-3\right)\left(y+3\right)^{2}.
\frac{4-y}{\left(y-3\right)\left(-y-3\right)}+\frac{1-y}{\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Factor 9-y^{2}. Factor 9+6y+y^{2}.
\frac{\left(4-y\right)\left(-1\right)\left(y+3\right)}{\left(y-3\right)\left(y+3\right)^{2}}+\frac{\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-3\right)\left(-y-3\right) and \left(y+3\right)^{2} is \left(y-3\right)\left(y+3\right)^{2}. Multiply \frac{4-y}{\left(y-3\right)\left(-y-3\right)} times \frac{-\left(y+3\right)}{-\left(y+3\right)}. Multiply \frac{1-y}{\left(y+3\right)^{2}} times \frac{y-3}{y-3}.
\frac{\left(4-y\right)\left(-1\right)\left(y+3\right)+\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Since \frac{\left(4-y\right)\left(-1\right)\left(y+3\right)}{\left(y-3\right)\left(y+3\right)^{2}} and \frac{\left(1-y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-4y-12+y^{2}+3y+y-3-y^{2}+3y}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Do the multiplications in \left(4-y\right)\left(-1\right)\left(y+3\right)+\left(1-y\right)\left(y-3\right).
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{y^{2}+6y+9}
Combine like terms in -4y-12+y^{2}+3y+y-3-y^{2}+3y.
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{2+y}{\left(y+3\right)^{2}}
Factor y^{2}+6y+9.
\frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}}-\frac{\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-3\right)\left(y+3\right)^{2} and \left(y+3\right)^{2} is \left(y-3\right)\left(y+3\right)^{2}. Multiply \frac{2+y}{\left(y+3\right)^{2}} times \frac{y-3}{y-3}.
\frac{3y-15-\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}}
Since \frac{3y-15}{\left(y-3\right)\left(y+3\right)^{2}} and \frac{\left(2+y\right)\left(y-3\right)}{\left(y-3\right)\left(y+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3y-15-2y+6-y^{2}+3y}{\left(y-3\right)\left(y+3\right)^{2}}
Do the multiplications in 3y-15-\left(2+y\right)\left(y-3\right).
\frac{4y-9-y^{2}}{\left(y-3\right)\left(y+3\right)^{2}}
Combine like terms in 3y-15-2y+6-y^{2}+3y.
\frac{4y-9-y^{2}}{y^{3}+3y^{2}-9y-27}
Expand \left(y-3\right)\left(y+3\right)^{2}.