Solve for x
x<\frac{32}{15}
Graph
Share
Copied to clipboard
3\left(4-x\right)+6>2\left(6x-7\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
12-3x+6>2\left(6x-7\right)
Use the distributive property to multiply 3 by 4-x.
18-3x>2\left(6x-7\right)
Add 12 and 6 to get 18.
18-3x>12x-14
Use the distributive property to multiply 2 by 6x-7.
18-3x-12x>-14
Subtract 12x from both sides.
18-15x>-14
Combine -3x and -12x to get -15x.
-15x>-14-18
Subtract 18 from both sides.
-15x>-32
Subtract 18 from -14 to get -32.
x<\frac{-32}{-15}
Divide both sides by -15. Since -15 is negative, the inequality direction is changed.
x<\frac{32}{15}
Fraction \frac{-32}{-15} can be simplified to \frac{32}{15} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}