Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4-x+24-6x\right)\times 114=14x\times 3\left(5x+13\right)
Variable x cannot be equal to -\frac{13}{5} since division by zero is not defined. Multiply both sides of the equation by 3\left(5x+13\right).
\left(28-x-6x\right)\times 114=14x\times 3\left(5x+13\right)
Add 4 and 24 to get 28.
\left(28-7x\right)\times 114=14x\times 3\left(5x+13\right)
Combine -x and -6x to get -7x.
3192-798x=14x\times 3\left(5x+13\right)
Use the distributive property to multiply 28-7x by 114.
3192-798x=42x\left(5x+13\right)
Multiply 14 and 3 to get 42.
3192-798x=210x^{2}+546x
Use the distributive property to multiply 42x by 5x+13.
3192-798x-210x^{2}=546x
Subtract 210x^{2} from both sides.
3192-798x-210x^{2}-546x=0
Subtract 546x from both sides.
3192-1344x-210x^{2}=0
Combine -798x and -546x to get -1344x.
-210x^{2}-1344x+3192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1344\right)±\sqrt{\left(-1344\right)^{2}-4\left(-210\right)\times 3192}}{2\left(-210\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -210 for a, -1344 for b, and 3192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1344\right)±\sqrt{1806336-4\left(-210\right)\times 3192}}{2\left(-210\right)}
Square -1344.
x=\frac{-\left(-1344\right)±\sqrt{1806336+840\times 3192}}{2\left(-210\right)}
Multiply -4 times -210.
x=\frac{-\left(-1344\right)±\sqrt{1806336+2681280}}{2\left(-210\right)}
Multiply 840 times 3192.
x=\frac{-\left(-1344\right)±\sqrt{4487616}}{2\left(-210\right)}
Add 1806336 to 2681280.
x=\frac{-\left(-1344\right)±168\sqrt{159}}{2\left(-210\right)}
Take the square root of 4487616.
x=\frac{1344±168\sqrt{159}}{2\left(-210\right)}
The opposite of -1344 is 1344.
x=\frac{1344±168\sqrt{159}}{-420}
Multiply 2 times -210.
x=\frac{168\sqrt{159}+1344}{-420}
Now solve the equation x=\frac{1344±168\sqrt{159}}{-420} when ± is plus. Add 1344 to 168\sqrt{159}.
x=\frac{-2\sqrt{159}-16}{5}
Divide 1344+168\sqrt{159} by -420.
x=\frac{1344-168\sqrt{159}}{-420}
Now solve the equation x=\frac{1344±168\sqrt{159}}{-420} when ± is minus. Subtract 168\sqrt{159} from 1344.
x=\frac{2\sqrt{159}-16}{5}
Divide 1344-168\sqrt{159} by -420.
x=\frac{-2\sqrt{159}-16}{5} x=\frac{2\sqrt{159}-16}{5}
The equation is now solved.
\left(4-x+24-6x\right)\times 114=14x\times 3\left(5x+13\right)
Variable x cannot be equal to -\frac{13}{5} since division by zero is not defined. Multiply both sides of the equation by 3\left(5x+13\right).
\left(28-x-6x\right)\times 114=14x\times 3\left(5x+13\right)
Add 4 and 24 to get 28.
\left(28-7x\right)\times 114=14x\times 3\left(5x+13\right)
Combine -x and -6x to get -7x.
3192-798x=14x\times 3\left(5x+13\right)
Use the distributive property to multiply 28-7x by 114.
3192-798x=42x\left(5x+13\right)
Multiply 14 and 3 to get 42.
3192-798x=210x^{2}+546x
Use the distributive property to multiply 42x by 5x+13.
3192-798x-210x^{2}=546x
Subtract 210x^{2} from both sides.
3192-798x-210x^{2}-546x=0
Subtract 546x from both sides.
3192-1344x-210x^{2}=0
Combine -798x and -546x to get -1344x.
-1344x-210x^{2}=-3192
Subtract 3192 from both sides. Anything subtracted from zero gives its negation.
-210x^{2}-1344x=-3192
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-210x^{2}-1344x}{-210}=-\frac{3192}{-210}
Divide both sides by -210.
x^{2}+\left(-\frac{1344}{-210}\right)x=-\frac{3192}{-210}
Dividing by -210 undoes the multiplication by -210.
x^{2}+\frac{32}{5}x=-\frac{3192}{-210}
Reduce the fraction \frac{-1344}{-210} to lowest terms by extracting and canceling out 42.
x^{2}+\frac{32}{5}x=\frac{76}{5}
Reduce the fraction \frac{-3192}{-210} to lowest terms by extracting and canceling out 42.
x^{2}+\frac{32}{5}x+\left(\frac{16}{5}\right)^{2}=\frac{76}{5}+\left(\frac{16}{5}\right)^{2}
Divide \frac{32}{5}, the coefficient of the x term, by 2 to get \frac{16}{5}. Then add the square of \frac{16}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{32}{5}x+\frac{256}{25}=\frac{76}{5}+\frac{256}{25}
Square \frac{16}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{32}{5}x+\frac{256}{25}=\frac{636}{25}
Add \frac{76}{5} to \frac{256}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{16}{5}\right)^{2}=\frac{636}{25}
Factor x^{2}+\frac{32}{5}x+\frac{256}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{16}{5}\right)^{2}}=\sqrt{\frac{636}{25}}
Take the square root of both sides of the equation.
x+\frac{16}{5}=\frac{2\sqrt{159}}{5} x+\frac{16}{5}=-\frac{2\sqrt{159}}{5}
Simplify.
x=\frac{2\sqrt{159}-16}{5} x=\frac{-2\sqrt{159}-16}{5}
Subtract \frac{16}{5} from both sides of the equation.