Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-6i\right)i}{3i^{2}}
Multiply both numerator and denominator by imaginary unit i.
\frac{\left(4-6i\right)i}{-3}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4i-6i^{2}}{-3}
Multiply 4-6i times i.
\frac{4i-6\left(-1\right)}{-3}
By definition, i^{2} is -1.
\frac{6+4i}{-3}
Do the multiplications in 4i-6\left(-1\right). Reorder the terms.
-2-\frac{4}{3}i
Divide 6+4i by -3 to get -2-\frac{4}{3}i.
Re(\frac{\left(4-6i\right)i}{3i^{2}})
Multiply both numerator and denominator of \frac{4-6i}{3i} by imaginary unit i.
Re(\frac{\left(4-6i\right)i}{-3})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4i-6i^{2}}{-3})
Multiply 4-6i times i.
Re(\frac{4i-6\left(-1\right)}{-3})
By definition, i^{2} is -1.
Re(\frac{6+4i}{-3})
Do the multiplications in 4i-6\left(-1\right). Reorder the terms.
Re(-2-\frac{4}{3}i)
Divide 6+4i by -3 to get -2-\frac{4}{3}i.
-2
The real part of -2-\frac{4}{3}i is -2.