Evaluate
\frac{-328\sqrt{5}-2009}{2081}\approx -1.317842526
Share
Copied to clipboard
\frac{-41}{49-8\sqrt{5}}
Subtract 45 from 4 to get -41.
\frac{-41\left(49+8\sqrt{5}\right)}{\left(49-8\sqrt{5}\right)\left(49+8\sqrt{5}\right)}
Rationalize the denominator of \frac{-41}{49-8\sqrt{5}} by multiplying numerator and denominator by 49+8\sqrt{5}.
\frac{-41\left(49+8\sqrt{5}\right)}{49^{2}-\left(-8\sqrt{5}\right)^{2}}
Consider \left(49-8\sqrt{5}\right)\left(49+8\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-41\left(49+8\sqrt{5}\right)}{2401-\left(-8\sqrt{5}\right)^{2}}
Calculate 49 to the power of 2 and get 2401.
\frac{-41\left(49+8\sqrt{5}\right)}{2401-\left(-8\right)^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(-8\sqrt{5}\right)^{2}.
\frac{-41\left(49+8\sqrt{5}\right)}{2401-64\left(\sqrt{5}\right)^{2}}
Calculate -8 to the power of 2 and get 64.
\frac{-41\left(49+8\sqrt{5}\right)}{2401-64\times 5}
The square of \sqrt{5} is 5.
\frac{-41\left(49+8\sqrt{5}\right)}{2401-320}
Multiply 64 and 5 to get 320.
\frac{-41\left(49+8\sqrt{5}\right)}{2081}
Subtract 320 from 2401 to get 2081.
\frac{-2009-328\sqrt{5}}{2081}
Use the distributive property to multiply -41 by 49+8\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}