Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-3i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-4i.
\frac{\left(4-3i\right)\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-3i\right)\left(3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)i^{2}}{25}
Multiply complex numbers 4-3i and 3-4i like you multiply binomials.
\frac{4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)\left(-1\right)}{25}
By definition, i^{2} is -1.
\frac{12-16i-9i-12}{25}
Do the multiplications in 4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)\left(-1\right).
\frac{12-12+\left(-16-9\right)i}{25}
Combine the real and imaginary parts in 12-16i-9i-12.
\frac{-25i}{25}
Do the additions in 12-12+\left(-16-9\right)i.
-i
Divide -25i by 25 to get -i.
Re(\frac{\left(4-3i\right)\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{4-3i}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\frac{\left(4-3i\right)\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-3i\right)\left(3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)i^{2}}{25})
Multiply complex numbers 4-3i and 3-4i like you multiply binomials.
Re(\frac{4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)\left(-1\right)}{25})
By definition, i^{2} is -1.
Re(\frac{12-16i-9i-12}{25})
Do the multiplications in 4\times 3+4\times \left(-4i\right)-3i\times 3-3\left(-4\right)\left(-1\right).
Re(\frac{12-12+\left(-16-9\right)i}{25})
Combine the real and imaginary parts in 12-16i-9i-12.
Re(\frac{-25i}{25})
Do the additions in 12-12+\left(-16-9\right)i.
Re(-i)
Divide -25i by 25 to get -i.
0
The real part of -i is 0.