Evaluate
\frac{2\left(3x+4\right)\left(4x+15\right)}{3\left(x+3\right)\left(19x+27\right)}
Expand
\frac{2\left(12x^{2}+61x+60\right)}{3\left(x+3\right)\left(19x+27\right)}
Graph
Share
Copied to clipboard
\frac{4-\frac{2\left(2x+3\right)}{9+3x}}{3+5\times \frac{2x+3}{4+3x}}
Express 2\times \frac{2x+3}{9+3x} as a single fraction.
\frac{4-\frac{2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Factor 9+3x.
\frac{\frac{4\times 3\left(x+3\right)}{3\left(x+3\right)}-\frac{2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{\frac{4\times 3\left(x+3\right)-2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Since \frac{4\times 3\left(x+3\right)}{3\left(x+3\right)} and \frac{2\left(2x+3\right)}{3\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12x+36-4x-6}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Do the multiplications in 4\times 3\left(x+3\right)-2\left(2x+3\right).
\frac{\frac{8x+30}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Combine like terms in 12x+36-4x-6.
\frac{\frac{8x+30}{3\left(x+3\right)}}{3+\frac{5\left(2x+3\right)}{4+3x}}
Express 5\times \frac{2x+3}{4+3x} as a single fraction.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{3\left(4+3x\right)}{4+3x}+\frac{5\left(2x+3\right)}{4+3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{4+3x}{4+3x}.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{3\left(4+3x\right)+5\left(2x+3\right)}{4+3x}}
Since \frac{3\left(4+3x\right)}{4+3x} and \frac{5\left(2x+3\right)}{4+3x} have the same denominator, add them by adding their numerators.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{12+9x+10x+15}{4+3x}}
Do the multiplications in 3\left(4+3x\right)+5\left(2x+3\right).
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{27+19x}{4+3x}}
Combine like terms in 12+9x+10x+15.
\frac{\left(8x+30\right)\left(4+3x\right)}{3\left(x+3\right)\left(27+19x\right)}
Divide \frac{8x+30}{3\left(x+3\right)} by \frac{27+19x}{4+3x} by multiplying \frac{8x+30}{3\left(x+3\right)} by the reciprocal of \frac{27+19x}{4+3x}.
\frac{32x+24x^{2}+120+90x}{3\left(x+3\right)\left(27+19x\right)}
Apply the distributive property by multiplying each term of 8x+30 by each term of 4+3x.
\frac{122x+24x^{2}+120}{3\left(x+3\right)\left(27+19x\right)}
Combine 32x and 90x to get 122x.
\frac{122x+24x^{2}+120}{\left(3x+9\right)\left(27+19x\right)}
Use the distributive property to multiply 3 by x+3.
\frac{122x+24x^{2}+120}{81x+57x^{2}+243+171x}
Apply the distributive property by multiplying each term of 3x+9 by each term of 27+19x.
\frac{122x+24x^{2}+120}{252x+57x^{2}+243}
Combine 81x and 171x to get 252x.
\frac{4-\frac{2\left(2x+3\right)}{9+3x}}{3+5\times \frac{2x+3}{4+3x}}
Express 2\times \frac{2x+3}{9+3x} as a single fraction.
\frac{4-\frac{2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Factor 9+3x.
\frac{\frac{4\times 3\left(x+3\right)}{3\left(x+3\right)}-\frac{2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{3\left(x+3\right)}{3\left(x+3\right)}.
\frac{\frac{4\times 3\left(x+3\right)-2\left(2x+3\right)}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Since \frac{4\times 3\left(x+3\right)}{3\left(x+3\right)} and \frac{2\left(2x+3\right)}{3\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{12x+36-4x-6}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Do the multiplications in 4\times 3\left(x+3\right)-2\left(2x+3\right).
\frac{\frac{8x+30}{3\left(x+3\right)}}{3+5\times \frac{2x+3}{4+3x}}
Combine like terms in 12x+36-4x-6.
\frac{\frac{8x+30}{3\left(x+3\right)}}{3+\frac{5\left(2x+3\right)}{4+3x}}
Express 5\times \frac{2x+3}{4+3x} as a single fraction.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{3\left(4+3x\right)}{4+3x}+\frac{5\left(2x+3\right)}{4+3x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{4+3x}{4+3x}.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{3\left(4+3x\right)+5\left(2x+3\right)}{4+3x}}
Since \frac{3\left(4+3x\right)}{4+3x} and \frac{5\left(2x+3\right)}{4+3x} have the same denominator, add them by adding their numerators.
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{12+9x+10x+15}{4+3x}}
Do the multiplications in 3\left(4+3x\right)+5\left(2x+3\right).
\frac{\frac{8x+30}{3\left(x+3\right)}}{\frac{27+19x}{4+3x}}
Combine like terms in 12+9x+10x+15.
\frac{\left(8x+30\right)\left(4+3x\right)}{3\left(x+3\right)\left(27+19x\right)}
Divide \frac{8x+30}{3\left(x+3\right)} by \frac{27+19x}{4+3x} by multiplying \frac{8x+30}{3\left(x+3\right)} by the reciprocal of \frac{27+19x}{4+3x}.
\frac{32x+24x^{2}+120+90x}{3\left(x+3\right)\left(27+19x\right)}
Apply the distributive property by multiplying each term of 8x+30 by each term of 4+3x.
\frac{122x+24x^{2}+120}{3\left(x+3\right)\left(27+19x\right)}
Combine 32x and 90x to get 122x.
\frac{122x+24x^{2}+120}{\left(3x+9\right)\left(27+19x\right)}
Use the distributive property to multiply 3 by x+3.
\frac{122x+24x^{2}+120}{81x+57x^{2}+243+171x}
Apply the distributive property by multiplying each term of 3x+9 by each term of 27+19x.
\frac{122x+24x^{2}+120}{252x+57x^{2}+243}
Combine 81x and 171x to get 252x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}